Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 1, Pages 99–107
DOI: https://doi.org/10.4213/mzm3757
(Mi mzm3757)
 

This article is cited in 11 scientific papers (total in 11 papers)

Hausdorff Dimension of Lebesgue Sets for Wpα Classes on Metric Spaces

M. A. Prokhorovich

Belarusian State University
References:
Abstract: Let (X,μ,d) be a space of homogeneous type, where d and μ are a metric and a measure, respectively, related to each other by the doubling condition with γ>0. Let Wpα(X) be generalized Sobolev classes, let Capα,p (where p>1 and 0<α1) be the corresponding capacity, and let dimH be the Hausdorff dimension. We show that the capacity Capα,p is related to the Hausdorff dimension and also prove that, for each function uWpα(X), p>1, 0<α<γ/p, there exists a set EX such that dimH(E)γαp, the limit
limr+01μ(B(x,r))B(x,r)udμ=u(x)
exists for each xXE, and moreover
limr+01μ(B(x,r))B(x,r)|uu(x)|qdμ=0,1q=1pαγ.
Keywords: Sobolev class, Lebesgue set, capacity, Hausdorff dimension, metric space, Borel measure.
Received: 17.05.2006
Revised: 06.12.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 1, Pages 88–95
DOI: https://doi.org/10.1134/S0001434607070115
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for Wpα Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007), 99–107; Math. Notes, 82:1 (2007), 88–95
Citation in format AMSBIB
\Bibitem{Pro07}
\by M.~A.~Prokhorovich
\paper Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 1
\pages 99--107
\mathnet{http://mi.mathnet.ru/mzm3757}
\crossref{https://doi.org/10.4213/mzm3757}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374887}
\elib{https://elibrary.ru/item.asp?id=9518307}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 1
\pages 88--95
\crossref{https://doi.org/10.1134/S0001434607070115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249410700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58649119074}
Linking options:
  • https://www.mathnet.ru/eng/mzm3757
  • https://doi.org/10.4213/mzm3757
  • https://www.mathnet.ru/eng/mzm/v82/i1/p99
  • This publication is cited in the following 11 articles:
    1. Heikkinen T., “Generalized Lebesgue Points For Hajlasz Functions”, J. Funct. space, 2018, 5637042  crossref  mathscinet  zmath  isi  scopus
    2. Heikkinen T., Koskela P., Tuominen H., “Approximation and quasicontinuity of Besov and Triebel?Lizorkin functions”, Trans. Am. Math. Soc., 369:5 (2017), 3547–3573  crossref  mathscinet  zmath  isi  scopus
    3. Bondarev S.A. Krotov V.G., “Fine properties of functions from Hajłasz–Sobolev classes M p , p 0, I. Lebesgue points”, J. Contemp. Math. Anal.-Armen. Aca., 51:6 (2016), 282–295  crossref  mathscinet  zmath  isi  scopus
    4. S. A. Bondarev, “Svoistva emkostei iz klassov Soboleva na metricheskikh prostranstvakh s meroi”, Tr. In-ta matem., 24:2 (2016), 20–31  mathnet
    5. E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Siberian Math. J., 56:5 (2015), 822–826  mathnet  crossref  crossref  isi  elib  elib
    6. Veniamin G. Krotov, Mikhail A. Prokhorovich, “Estimates for the Exceptional Lebesgue Sets of Functions from Sobolev Classes”, Recent Advances in Harmonic Analysis and Applications, Springer Proceedings in Mathematics & Statistics, 25, Springer, New York, 2013, 225–234  crossref  mathscinet  zmath  scopus
    7. E. V. Gubkina, K. V. Zabello, M. A. Prokhorovich, E. M. Radyno, “Approksimatsiya Luzina funktsii iz klassov Soboleva na prostranstve mnogomernogo $p$-adicheskogo argumenta”, PFMT, 2013, no. 2(15), 58–65  mathnet
    8. V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Math. Notes, 89:1 (2011), 156–159  mathnet  crossref  crossref  mathscinet  isi
    9. D. N. Oleshkevich, M. A. Prokhorovich, “Tochki Lebega dlya funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh chisel”, Vestnik BrGU. Seriya 4: Fizika, Matematika, 2010, no. 2, 103–110  hlocal
    10. M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Math. Notes, 85:4 (2009), 584–589  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. V. G. Krotov, M. A. Prokhorovich, “The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure”, Russian Math. (Iz. VUZ), 52:5 (2008), 47–57  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:890
    Full-text PDF :327
    References:70
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025