|
This article is cited in 11 scientific papers (total in 11 papers)
Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
M. A. Prokhorovich Belarusian State University
Abstract:
Let $(X,\mu,d)$ be a space of homogeneous type, where $d$ and $\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with $\gamma>0$. Let $W^p_\alpha(X)$ be generalized Sobolev classes, let $\operatorname{Cap}_{\alpha,p}$ (where $p>1$ and $0<\alpha\le 1$) be the corresponding capacity, and let $\dim_H$ be the Hausdorff dimension. We show that the capacity $\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function $u\in W^p_\alpha(X)$, $p>1$, $0<\alpha<\gamma/p$, there exists a set $E\subset X$ such that $\dim_H(E)\le\gamma-\alpha p$, the limit
$$
\lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x)
$$
exists for each $x\in X\setminus E$, and moreover
$$
\lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}.
$$
Keywords:
Sobolev class, Lebesgue set, capacity, Hausdorff dimension, metric space, Borel measure.
Received: 17.05.2006 Revised: 06.12.2006
Citation:
M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007), 99–107; Math. Notes, 82:1 (2007), 88–95
Linking options:
https://www.mathnet.ru/eng/mzm3757https://doi.org/10.4213/mzm3757 https://www.mathnet.ru/eng/mzm/v82/i1/p99
|
Statistics & downloads: |
Abstract page: | 820 | Full-text PDF : | 316 | References: | 63 | First page: | 5 |
|