Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 1, Pages 99–107
DOI: https://doi.org/10.4213/mzm3757
(Mi mzm3757)
 

This article is cited in 11 scientific papers (total in 11 papers)

Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces

M. A. Prokhorovich

Belarusian State University
References:
Abstract: Let $(X,\mu,d)$ be a space of homogeneous type, where $d$ and $\mu$ are a metric and a measure, respectively, related to each other by the doubling condition with $\gamma>0$. Let $W^p_\alpha(X)$ be generalized Sobolev classes, let $\operatorname{Cap}_{\alpha,p}$ (where $p>1$ and $0<\alpha\le 1$) be the corresponding capacity, and let $\dim_H$ be the Hausdorff dimension. We show that the capacity $\operatorname{Cap}_{\alpha,p}$ is related to the Hausdorff dimension and also prove that, for each function $u\in W^p_\alpha(X)$, $p>1$, $0<\alpha<\gamma/p$, there exists a set $E\subset X$ such that $\dim_H(E)\le\gamma-\alpha p$, the limit
$$ \lim_{r\to +0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^*(x) $$
exists for each $x\in X\setminus E$, and moreover
$$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^*(x)|^q\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$
Keywords: Sobolev class, Lebesgue set, capacity, Hausdorff dimension, metric space, Borel measure.
Received: 17.05.2006
Revised: 06.12.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 1, Pages 88–95
DOI: https://doi.org/10.1134/S0001434607070115
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007), 99–107; Math. Notes, 82:1 (2007), 88–95
Citation in format AMSBIB
\Bibitem{Pro07}
\by M.~A.~Prokhorovich
\paper Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 1
\pages 99--107
\mathnet{http://mi.mathnet.ru/mzm3757}
\crossref{https://doi.org/10.4213/mzm3757}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374887}
\elib{https://elibrary.ru/item.asp?id=9518307}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 1
\pages 88--95
\crossref{https://doi.org/10.1134/S0001434607070115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249410700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58649119074}
Linking options:
  • https://www.mathnet.ru/eng/mzm3757
  • https://doi.org/10.4213/mzm3757
  • https://www.mathnet.ru/eng/mzm/v82/i1/p99
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:820
    Full-text PDF :316
    References:63
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024