Abstract:
Let (X,μ,d) be a space of homogeneous type, where d and μ are a metric and a measure, respectively, related to each other by the doubling condition with γ>0. Let Wpα(X) be generalized Sobolev classes, let Capα,p (where p>1 and 0<α⩽1) be the corresponding capacity, and let dimH be the Hausdorff dimension. We show that the capacity Capα,p is related to the Hausdorff dimension and also prove that, for each function u∈Wpα(X), p>1, 0<α<γ/p, there exists a set E⊂X such that dimH(E)⩽γ−αp, the limit
limr→+01μ(B(x,r))∫B(x,r)udμ=u∗(x)
exists for each x∈X∖E, and moreover
limr→+01μ(B(x,r))∫B(x,r)|u−u∗(x)|qdμ=0,1q=1p−αγ.
Citation:
M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for Wpα Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007), 99–107; Math. Notes, 82:1 (2007), 88–95
This publication is cited in the following 11 articles:
Heikkinen T., “Generalized Lebesgue Points For Hajlasz Functions”, J. Funct. space, 2018, 5637042
Heikkinen T., Koskela P., Tuominen H., “Approximation and quasicontinuity of Besov and Triebel?Lizorkin functions”, Trans. Am. Math. Soc., 369:5 (2017), 3547–3573
Bondarev S.A. Krotov V.G., “Fine properties of functions from Hajłasz–Sobolev classes M p , p 0, I. Lebesgue points”, J. Contemp. Math. Anal.-Armen. Aca., 51:6 (2016), 282–295
S. A. Bondarev, “Svoistva emkostei iz klassov Soboleva na metricheskikh prostranstvakh s meroi”, Tr. In-ta matem., 24:2 (2016), 20–31
E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Siberian Math. J., 56:5 (2015), 822–826
Veniamin G. Krotov, Mikhail A. Prokhorovich, “Estimates for the Exceptional Lebesgue Sets of Functions from Sobolev Classes”, Recent Advances in Harmonic Analysis and Applications, Springer Proceedings in Mathematics & Statistics, 25, Springer, New York, 2013, 225–234
E. V. Gubkina, K. V. Zabello, M. A. Prokhorovich, E. M. Radyno, “Approksimatsiya Luzina funktsii iz klassov Soboleva na prostranstve mnogomernogo $p$-adicheskogo argumenta”, PFMT, 2013, no. 2(15), 58–65
V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Math. Notes, 89:1 (2011), 156–159
D. N. Oleshkevich, M. A. Prokhorovich, “Tochki Lebega dlya funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh chisel”, Vestnik BrGU. Seriya 4: Fizika, Matematika, 2010, no. 2, 103–110
M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Math. Notes, 85:4 (2009), 584–589
V. G. Krotov, M. A. Prokhorovich, “The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure”, Russian Math. (Iz. VUZ), 52:5 (2008), 47–57