|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
S. Yu. Kazantsev, K. N. Pankov, “Algorithm for quickly generating a key sequence using a quantum communication channel”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 93–98 |
|
2023 |
2. |
M. M. Glukhov, K. N. Pankov, “On a class of algebraic geometric codes”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 132–134 |
3. |
O. V. Kamlovskii, K. N. Pankov, “Some classes of resilient functions over Galois rings and their linear characteristics”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 18–22 |
|
2022 |
4. |
K. N. Pankov, “Some conditions for the applicability of the integral cryptanalysis to $4$-rounds of AES-like ciphers”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 57–62 |
5. |
O. V. Kamlovskii, K. N. Pankov, “Some classes of balanced functions over finite fields with a small value of the linear characteristic”, Probl. Peredachi Inf., 58:4 (2022), 103–117 |
2
|
|
2021 |
6. |
K. N. Pankov, “Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 48–51 |
|
2019 |
7. |
K. N. Pankov, “Recursion Formulas for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 62–66 |
2
|
|
2018 |
8. |
K. N. Pankov, “Improved asymptotic estimates for the numbers of correlation-immune and $k$-resilient vectorial Boolean functions”, Diskr. Mat., 30:2 (2018), 73–98 ; Discrete Math. Appl., 29:3 (2019), 195–213 |
7
|
9. |
K. N. Pankov, “Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 49–52 |
2
|
|
2017 |
10. |
K. N. Pankov, “Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 46–49 |
4
|
|
2014 |
11. |
K. N. Pankov, “Asymptotic estimates for numbers of Boolean mappings with given cryptographic properties”, Mat. Vopr. Kriptogr., 5:4 (2014), 73–97 |
9
|
12. |
K. N. Pankov, “Local limit theorem for the distribution of incomplete vector formed by the weights of subfunctions of random binary mapping components”, Mat. Vopr. Kriptogr., 5:3 (2014), 49–80 |
3
|
|
2012 |
13. |
K. N. Pankov, “Speeds of convergence in limit theorems for joint distributions of some random binary mappings characteristics”, Prikl. Diskr. Mat., 2012, no. 4(18), 14–30 |
7
|
|
2005 |
14. |
K. N. Pankov, “An upper bound for the number of functions satisfying the strict avalanche criterion”, Diskr. Mat., 17:2 (2005), 95–101 ; Discrete Math. Appl., 15:3 (2005), 263–269 |
1
|
|
Organisations |
|
|
|
|