Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 49–52
DOI: https://doi.org/10.17223/2226308X/11/15
(Mi pdma405)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete Functions

Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings

K. N. Pankov

Moscow Technical University of Communications and Informatics, Moscow
Full-text PDF (612 kB) Citations (2)
References:
Abstract: For linear combinations of coordinate functions of a random Boolean mapping from the vectorspace $V_n$ of all binary vectors of length $n$ to the vectorspace $V_m$, the local limit theorem for the joint distribution of weights of some their subfunctions is improved. By means of this theorem, we have obtained an asymptotic formula for $|K(m,n,k)|$ that is the number of correlation-immune of order $k$ functions as $n\to\infty$, $m\in\{2,3,4\}$ and $k(5+2\log_2n)+6m\le n(\frac5{18}-\gamma')$ for any $0<\gamma'<5/18$, $k=\mathrm O(n/\ln n)$:
\begin{gather*} \log _2|K(m,n,k)|\sim m2^n+\left(\frac{n+1+\log_2\pi}2-k\right)(2^m-1)-m2^{m-1}-\\ -(2^m-1)\left(\frac{n-k}2{n\choose k}+\log_2\sqrt\frac\pi2\sum_{s=0}^k{n\choose s}\right)+(2\cdot3^{m-2}-1)\sum_{s=0}^k{n\choose s}. \end{gather*}
Also, we have obtained improved asymptotic estimates for the number $|K(n,1,k)|$ as $n\to\infty$, $k<\frac n{\ln n}\left(\frac{\ln2}4-\varepsilon\right)$ for any $0<\varepsilon<\ln2/4$:
\begin{gather*} \log_2|K[n,1,k]|\sim2^n-\frac12\left((n-k){n\choose k}-n\right)-k-\\ -\left(\frac{n-k}2{n\choose k}+\sum_{s=0}^k{n\choose s}\log_2\sqrt\frac\pi2-1\right)\log_2\sqrt{\pi/2}. \end{gather*}
Keywords: random binary mapping, local limit theorem, weights of subfunctions, correlation-immune function.
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.214
Language: Russian
Citation: K. N. Pankov, “Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 49–52
Citation in format AMSBIB
\Bibitem{Pan18}
\by K.~N.~Pankov
\paper Improved asymptotic estimates for the number of correlation-immune Boolean functions and mappings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 49--52
\mathnet{http://mi.mathnet.ru/pdma405}
\crossref{https://doi.org/10.17223/2226308X/11/15}
\elib{https://elibrary.ru/item.asp?id=35557598}
Linking options:
  • https://www.mathnet.ru/eng/pdma405
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p49
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :29
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024