Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 46–49
DOI: https://doi.org/10.17223/2226308X/10/20
(Mi pdma354)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete Functions

Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings

K. N. Pankovab

a Moscow Technological University, Moscow
b Moscow Technical University of Communications and Informatics, Moscow
Full-text PDF (572 kB) Citations (4)
References:
Abstract: For linear combinations of coordinate functions of a random Boolean mapping, a local limit theorem for the distribution of subsets of their spectral coefficients is improved. By means of this theorem, we obtain an asymptotic formula for the $R(m,n,k)|$ –the number of $(n,m,k)$-resilient functions as $n\to\infty$, $m\in\{1,2,3,4\}$ and $k\leq\frac{n(1-\varepsilon)}{5+2\log _2n}$ for any $0<\varepsilon <1$, $k=\mathrm O(\frac n{\ln n})$:
\begin{gather*} \log _2|R(m,n,k)|\sim m2^n-(2^m-1)\left(\frac{n-k}2{n\choose k}+\log _2\sqrt\frac\pi2\sum_{s=0}^k{n\choose s}\right)+\\ +(2\cdot3^{m-2}-1)\mathrm{Ind}\{m\neq1\}\sum_{s=0}^k{n\choose s}. \end{gather*}
Also, we obtain upper and lower asymptotic estimates for the number $|R(m,n,k)|$ as $n\to\infty$, $k(5+2\log _2n)+5m\le n(1-\varepsilon)$ for any $0<\varepsilon<1$:
\begin{gather*} -\varepsilon_1(m-1)\sum_{s=0}^k{n\choose s}<\log _2|R(m,n,k)|-m2^n+(2^m-1)\left(\frac{n-k}2{n\choose k}+\log_2\sqrt\frac\pi2\sum_{s=0}^k{n\choose s}\right)<\\ <\varepsilon_2(m-2)(2^m-1)\sum_{s=0}^k{n\choose s}+\sum_{s=0}^k{n\choose s}\qquad\text{for any}\quad\varepsilon_1,\varepsilon_2\quad(0<\varepsilon_1,\varepsilon_2<1). \end{gather*}
Keywords: random binary mapping, local limit theorem, spectral coefficient, resilient vector Boolean function.
Document Type: Article
UDC: 519.212.2+519.214
Language: Russian
Citation: K. N. Pankov, “Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 46–49
Citation in format AMSBIB
\Bibitem{Pan17}
\by K.~N.~Pankov
\paper Refined asymptotic estimates for the number of $(n,m,k)$-resilient Boolean mappings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 46--49
\mathnet{http://mi.mathnet.ru/pdma354}
\crossref{https://doi.org/10.17223/2226308X/10/20}
Linking options:
  • https://www.mathnet.ru/eng/pdma354
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p46
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :45
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024