|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
Alexander N. Manashov, “Unitarity of the SoV Transform for $\mathrm{SL}(2,\mathbb C)$ Spin Chains”, SIGMA, 19 (2023), 086, 24 pp. |
|
2021 |
2. |
Sergey É. Derkachov, Karol K. Kozlowski, Alexander N. Manashov, “Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains”, SIGMA, 17 (2021), 063, 26 pp. |
2
|
3. |
A. N. Manashov, “Mellin–Barnes integrals related to the Lie algebra $u(N)$”, Zap. Nauchn. Sem. POMI, 509 (2021), 176–184 |
|
2020 |
4. |
Sergey È. Derkachov, Alexander N. Manashov, “On Complex Gamma-Function Integrals”, SIGMA, 16 (2020), 003, 20 pp. |
13
|
|
2018 |
5. |
Sergey É. Derkachov, Alexander N. Manashov, Pavel A. Valinevich, “$\mathrm{SL}(2,\mathbb{C})$ Gustafson Integrals”, SIGMA, 14 (2018), 030, 16 pp. |
10
|
|
2010 |
6. |
S. E. Derkachov, A. N. Manashov, “On the spectrum of anomalous dimensions of composite operators in the scalar field theory”, Zap. Nauchn. Sem. POMI, 374 (2010), 136–169 ; J. Math. Sci. (N. Y.), 168:6 (2010), 837–855 |
7
|
|
2009 |
7. |
S. E. Derkachev, A. N. Manashov, “General solution of the Yung–Baxter equation with symmetry group $\mathrm{SL}(\mathrm n,\mathbb C)$”, Algebra i Analiz, 21:4 (2009), 1–94 ; St. Petersburg Math. J., 21:4 (2010), 513–577 |
28
|
|
2006 |
8. |
Sergey É Derkachov, Alexander N. Manashov, “$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain”, SIGMA, 2 (2006), 084, 20 pp. |
38
|
|
1998 |
9. |
S. È. Derkachev, A. N. Manashov, “Critical dimensions of composite operators in the nonlinear $\sigma$-model”, TMF, 116:3 (1998), 379–400 ; Theoret. and Math. Phys., 116:3 (1998), 1034–1049 |
10
|
|
1991 |
10. |
V. A. Andrianov, A. N. Manashov, “Generalization of the Skyrme model for $\pi$ and $\pi'$-mesons”, Zap. Nauchn. Sem. LOMI, 189 (1991), 10–14 ; J. Soviet Math., 62:5 (1992), 2947–2950 |
|
1990 |
11. |
A. A. Andrianov, V. A. Andrianov, A. N. Manashov, “An origin vertices dimension 4 in QCD-inspired chiral Lagrangians”, Zap. Nauchn. Sem. LOMI, 180 (1990), 9–22 ; J. Math. Sci., 68:2 (1994), 169–176 |
1
|
|
Organisations |
|
|
|
|