Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 084, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.084
(Mi sigma112)
 

This article is cited in 38 scientific papers (total in 38 papers)

$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain

Sergey É Derkachova, Alexander N. Manashovbc

a St.-Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St.-Petersburg, Russia
b Department of Theoretical Physics, Sankt-Petersburg University, St.-Petersburg, Russia
c Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
References:
Abstract: The problem of constructing the $SL(N,\mathbb C)$ invariant solutions to the Yang–Baxter equation is considered. The solutions ($\mathcal R$-operators) for arbitrarily principal series representations of $\mathrm{SL}(N,\mathbb C)$ are obtained in an explicit form. We construct the commutative family of the operators $\mathcal Q_k(u)$ which can be identified with the Baxter operators for the noncompact $\mathrm{SL}(N,\mathbb C)$ spin magnet.
Keywords: Yang–Baxter equation; Baxter operator.
Received: October 30, 2006; Published online December 2, 2006
Bibliographic databases:
Document Type: Article
MSC: 82B23; 82B20
Language: English
Citation: Sergey É Derkachov, Alexander N. Manashov, “$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain”, SIGMA, 2 (2006), 084, 20 pp.
Citation in format AMSBIB
\Bibitem{DerMan06}
\by Sergey \'E Derkachov, Alexander N.~Manashov
\paper $\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain
\jour SIGMA
\yr 2006
\vol 2
\papernumber 084
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma112}
\crossref{https://doi.org/10.3842/SIGMA.2006.084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264900}
\zmath{https://zbmath.org/?q=an:1138.82009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234749}
Linking options:
  • https://www.mathnet.ru/eng/sigma112
  • https://www.mathnet.ru/eng/sigma/v2/p84
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :94
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024