|
This article is cited in 2 scientific papers (total in 2 papers)
Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains
Sergey É. Derkachova, Karol K. Kozlowskib, Alexander N. Manashovac a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences,
Fontanka 27, 191023 St. Petersburg, Russia
b Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
c Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany
Abstract:
This work develops a new method, based on the use of Gustafson's integrals and on the evaluation of singular integrals, allowing one to establish the unitarity of the separation of variables transform for infinite-dimensional representations of rank one quantum integrable models. We examine in detail the case of the $\mathrm{SL}(2,\mathbb R)$ spin chains.
Keywords:
spin chains, separation of variables, Gustafson's integrals.
Received: March 8, 2021; in final form June 14, 2021; Published online June 25, 2021
Citation:
Sergey É. Derkachov, Karol K. Kozlowski, Alexander N. Manashov, “Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains”, SIGMA, 17 (2021), 063, 26 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1745 https://www.mathnet.ru/eng/sigma/v17/p63
|
Statistics & downloads: |
Abstract page: | 109 | Full-text PDF : | 31 | References: | 21 |
|