Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Sobolev, Vladimir Andreevich

Statistics Math-Net.Ru
Total publications: 26
Scientific articles: 26

Number of views:
This page:3259
Abstract pages:6023
Full texts:2632
References:642
Professor
Doctor of physico-mathematical sciences (1991)
Speciality: 01.01.11 (System analisys)
Birth date: 26.02.1949
E-mail: ,
Keywords: dynamical systems; integral manifolds; singular perturbations; dynamics of multibody and gyroscopic systems; mathematical modelling; automatic control; chemical kinetics.

Subject:

Theorems on existence and properties of weakly attractive slow integral mamifolds were proved and, as consequence, the known problem on mathematical justification of the precession theory of gyroscopic systems was solved and some paradoxes of this theory were explained. A notion of a fast integral manifold was proposed and the possibility to reduce singularly perturbed systems to a block triagular form was stated. This permits to develop a new method of decomposition of control systems this slow and fast variables and to apply this method to solution of some control theory problems. Such approach was developed on continuous and discrete systems with several time scales (with N. V. Voropaeva), stochastic systems (with E. Ya. Gorelova), periodic control systems (with E. N. Zharikova), time delay systems (with E. Fridman), distributed parameter systems (with S. V. Ozerskii). The slow integral manifolds theory was extended to systems in the events that the usual conditions of known Tikhonov theorem are violated. The slow integral manifolds branching problems were studied with K. Schneider. A new approach to investigation of so called canard-trajectories, which is based on an idea of glueing of attractive and reppelent slow integral manifolds, was proposed. A notion of black swan (multidimensional analogy of a canard) was proposed and theorem on existence and properties of such integral surface were stated (with E. A. Shchepakina). Jointly with G. N. Gorelov a canard-trajectory was found at first in parabolic systems and used to solve the chemical kinetics problems (critical condition of thermal explosion in the case of autocatalytic combustion were obtained). Jointly with V. M. Gol'dshtein a detailed algorithm of chemical kinetics systems, based on a combined using of integral manifolds method and Mishchenko–Rozov asymptotic formulae, was worked out. Two monographs and number of papers (with V. I. Babushok, V. M. Gol'dshtein, G. N. Gorelov, A. Ziniviev, E. A. Shchepakina, G. S. Yablonslii et al) are devoted to investigation of chemical kinetics problems. Jointly with K. Scneider and E. A. Shchepakina a new type of combustion travelling waves is described (canard travelling wave). Jointly with V. V. Strygin some problems of dynamics and stability of rigid bodies systems and satellites were solved.

Biography

Graduated from Faculty of Mathematics and Mechanics of Voronezh State University in 1971 (department of algebra and topological methods of analysis). Ph. D. thesis was defended in 1981. D. Sci. thesis was defended in 1991. A list of my works contains more than 100 titles. Since 1990 I have led the research seminar at Samara on nonlinear modelling and control.

Full Member of Russian Academy of Natural Sciences, 1996; Holder of Honorary Badge of Academy "For Merits in Development of Science and Economy", 1997; Editor-in-Chief of scientific journal "Transaction of Russian Academy of Natural Sciences. Series:Mathematics. Mathematical Modeling. Informatics and Control", 1997. In 2001 I was awarded the prize of the Samara region for a best work in mathematics. Member of AMS since 1984.

   
Main publications:
  • Mortell M.P., O'Malley R.E., Pokrovskii A., Sobolev V. Singular perturbations and hysteresis. SIAM, 2005.
  • Shchepakina E., Sobolev V., Mortell M.P. Singular perturbations: Introduction to system order reduction methods with applications. Springer, 2014.

https://www.mathnet.ru/eng/person17849
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/216716
https://orcid.org/0000-0001-7327-7340

Publications in Math-Net.Ru Citations
2023
1. V. A. Sobolev, “Decomposition of singularly perturbed optimal tracking problems with a given reference trajectory”, Sib. Zh. Ind. Mat., 26:3 (2023),  112–124  mathnet; J. Appl. Industr. Math., 17:3 (2023), 640–650
2022
2. V. A. Sobolev, “Reduction of the optimal tracking problem in the presence of noise”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 28:3-4 (2022),  32–39  mathnet
2021
3. V. A. Sobolev, E. A. Tropkina, E. A. Shchepakina, L. Zhang, “Decomposition of traveling waves problems”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:3 (2021),  22–30  mathnet
4. V. A. Sobolev, E. A. Tropkina, E. A. Shchepakina, L. Zhang, J. Wang, “Critical travelling waves in one model of the "reaction-diffusion" type”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:2 (2021),  16–24  mathnet
2018
5. V. A. Sobolev, E. A. Shchepakina, E. A. Tropkina, “Parametrization of invariant manifolds of slow motions”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:4 (2018),  33–40  mathnet  elib
2015
6. A. A. Archibasov, A. Korobeinikov, V. A. Sobolev, “Asymptotic expansions of solutions in a singularly perturbed model of virus evolution”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  242–252  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:2 (2015), 240–250  isi  elib  scopus 10
2014
7. M. Osintcev, V. Sobolev, “Order reduction of control and estimation problems for flexible joint manipulator”, Matem. Mod., 26:7 (2014),  72–86  mathnet
8. M. O. Osintsev, V. A. Sobolev, “Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations”, Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014),  50–64  mathnet  elib; Comput. Math. Math. Phys., 54:1 (2014), 45–58  isi  elib  scopus 9
2013
9. M. O. Osintsev, V. A. Sobolev, “Reduction of Dimensionality of Optimal Estimation and Control Problems for Systems of Low Dissipativity Solid Bodies”, Avtomat. i Telemekh., 2013, no. 8,  121–137  mathnet  elib; Autom. Remote Control, 74:8 (2013), 1334–1347  isi  elib  scopus 10
2012
10. V. A. Sobolev, E. A. Tropkina, “Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models”, Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  81–96  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 52:1 (2012), 75–89  isi  elib  scopus 9
2011
11. V. A. Sobolev, D. M. Shchepakin, “Integral manifolds and the reduction principle”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 5(86),  81–92  mathnet
2006
12. N. V. Voropaeva, V. A. Sobolev, “Decomposition of a linear-quadratic optimal control problem with fast and slow variables”, Avtomat. i Telemekh., 2006, no. 8,  3–11  mathnet  mathscinet  zmath; Autom. Remote Control, 67:8 (2006), 1185–1193  scopus 8
2005
13. E. N. Smetannikova, V. A. Sobolev, “Regularization of cheap periodic control problems”, Avtomat. i Telemekh., 2005, no. 6,  59–73  mathnet  mathscinet  zmath; Autom. Remote Control, 66:6 (2005), 903–916  scopus 18
14. E. N. Smetannikova, V. A. Sobolev, “A Periodic Singularly Perturbed Problem for the Matrix Riccati Equation”, Differ. Uravn., 41:4 (2005),  500–507  mathnet  mathscinet; Differ. Equ., 41:4 (2005), 529–537 2
15. E. V. Kitaeva, V. A. Sobolev, “Numerical determination of bounded solutions to discrete singularly perturbed equations and critical combustion regimes”, Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  56–87  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:1 (2005), 52–82 2
2001
16. V. A. Sobolev, “Geometry of singular perturbations in degenerated cases”, Matem. Mod., 13:12 (2001),  75–94  mathnet  mathscinet  zmath 3
1997
17. E. N. Zharikova, V. A. Sobolev, “Optimal Periodic Control Systems Subject to Singular Perturbations”, Avtomat. i Telemekh., 1997, no. 7,  151–168  mathnet  zmath; Autom. Remote Control, 58:7 (1997), 1188–1202 6
1996
18. V. A. Sobolev, E. A. Shchepakina, “Duck trajectories in a problem of combustion theory”, Differ. Uravn., 32:9 (1996),  1175–1184  mathnet  mathscinet; Differ. Equ., 32:9 (1996), 1177–1186 13
1995
19. N. V. Voropaeva, V. A. Sobolev, “A constructive method for splitting nonlinear singularly perturbed differential systems”, Differ. Uravn., 31:4 (1995),  569–578  mathnet  mathscinet; Differ. Equ., 31:4 (1995), 528–537 1
1994
20. L. I. Kononenko, V. A. Sobolev, “Asymptotic decomposition of slow integral manifolds”, Sibirsk. Mat. Zh., 35:6 (1994),  1264–1278  mathnet  mathscinet  zmath; Siberian Math. J., 35:6 (1994), 1119–1132  isi 29
1993
21. V. A. Sobolev, E. A. Shchepakina, “Self-ignition of dusty media”, Fizika Goreniya i Vzryva, 29:3 (1993),  133–136  mathnet; Combustion, Explosion and Shock Waves, 29:3 (1993), 378–381 26
1991
22. V. A. Sobolev, “Singular perturbations in a linear-quadratic problem of optimal control”, Avtomat. i Telemekh., 1991, no. 2,  53–64  mathnet  mathscinet  zmath; Autom. Remote Control, 52:2 (1991), 180–189 13
1989
23. V. A. Sobolev, K. I. Chernyshov, “A singularly perturbed differential equation with a Fredholm operator multiplying the derivative”, Differ. Uravn., 25:2 (1989),  247–258  mathnet  mathscinet  zmath; Differ. Equ., 25:2 (1989), 181–190
1988
24. Yu. V. Miheev, V. A. Sobolev, È. M. Fridman, “Asymptotic analysis of digital control systems”, Avtomat. i Telemekh., 1988, no. 9,  83–88  mathnet  mathscinet  zmath; Autom. Remote Control, 49:9 (1988), 1175–1180 4
25. V. A. Sobolev, L. M. Fridman, “Decomposition of systems operating at different rates with discontinuous controls”, Avtomat. i Telemekh., 1988, no. 3,  29–34  mathnet  mathscinet  zmath; Autom. Remote Control, 49:3 (1988), 288–292
1985
26. V. V. Strygin, V. A. Sobolev, E. Ya. Gorelova, È. M. Fridman, “Integral manifolds of singularly perturbed systems and some of their applications”, Differ. Uravn., 21:10 (1985),  1723–1726  mathnet  mathscinet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024