|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
A. A. Borovkov, E. I. Prokopenko, “On limit theorems for the distribution of the maximal element in a sequence of random variables”, Teor. Veroyatnost. i Primenen., 69:2 (2024), 233–255 ; Theory Probab. Appl., 69:2 (2024), 186–204 |
|
2022 |
2. |
A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Probl. Peredachi Inf., 58:2 (2022), 48–65 ; Problems Inform. Transmission, 58:2 (2022), 144–159 |
|
2021 |
3. |
A. I. Sakhanenko, V. I. Wachtel, E. I. Prokopenko, A. D. Shelepova, “On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 9–26 |
2
|
|
2020 |
4. |
A. A. Mogul'skii, E. I. Prokopenko, “Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления”, Mat. Tr., 23:2 (2020), 148–176 |
4
|
|
2019 |
5. |
A. A. Mogul'skiĭ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Mat. Tr., 22:2 (2019), 106–133 ; Siberian Adv. Math., 30:4 (2020), 284–302 |
8
|
6. |
A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for multidimensional second compound renewal processes in the phase space”, Sib. Èlektron. Mat. Izv., 16 (2019), 1478–1492 |
7
|
7. |
A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for multidimensional first compound renewal processes in the phase space”, Sib. Èlektron. Mat. Izv., 16 (2019), 1464–1477 |
8
|
8. |
A. A. Mogulskii, E. I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Sib. Èlektron. Mat. Izv., 16 (2019), 1449–1463 |
9
|
9. |
A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641 ; Theory Probab. Appl., 64:4 (2020), 499–512 |
8
|
|
2018 |
10. |
A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III”, Sib. Èlektron. Mat. Izv., 15 (2018), 528–553 |
11
|
11. |
A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II”, Sib. Èlektron. Mat. Izv., 15 (2018), 503–527 |
10
|
12. |
A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Sib. Èlektron. Mat. Izv., 15 (2018), 475–502 |
11
|
13. |
M. G. Chebunin, E. I. Prokopenko, A. S. Tarasenko, “Spatially decentralized protocols in random multiple access networks”, Sib. Èlektron. Mat. Izv., 15 (2018), 135–152 |
|
2015 |
14. |
A. V. Logachov, E. I. Prokopenko, “Large deviation principle for integral functionals of a Markov process”, Sib. Èlektron. Mat. Izv., 12 (2015), 639–650 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|