|
This article is cited in 9 scientific papers (total in 9 papers)
Probability theory and mathematical statistics
The rate function and the fundamental function for multidimensional compound renewal process
A. A. Mogulskiiab, E. I. Prokopenkoba a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Abstract:
We consider two multidimensional compound renewal processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$. Assuming that the increments satisfy the Cramer's condition, we define and investigate the rate functions and the fundamental functions for the processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$.
Keywords:
compound multidimensional renewal process, large deviations, Cramer's condition, deviation (rate) function, fundamental function, Legendre transformation.
Received June 4, 2019, published October 17, 2019
Citation:
A. A. Mogulskii, E. I. Prokopenko, “The rate function and the fundamental function for multidimensional compound renewal process”, Sib. Èlektron. Mat. Izv., 16 (2019), 1449–1463
Linking options:
https://www.mathnet.ru/eng/semr1141 https://www.mathnet.ru/eng/semr/v16/p1449
|
Statistics & downloads: |
Abstract page: | 240 | Full-text PDF : | 131 | References: | 24 |
|