Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 475–502
DOI: https://doi.org/10.17377/semi.2018.15.041
(Mi semr932)
 

This article is cited in 11 scientific papers (total in 11 papers)

Probability theory and mathematical statistics

Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I

A. A. Mogulskiiab, E. I. Prokopenkoab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, 1 Pirogova Str., 630090, Novosibirsk, Russia
References:
Abstract: In the work, which consists of 4 papers (the article and [15]–[17]), we obtain integro-local limit theorems in the phase space for multidimensional compound renewal processes, when Cramer's condition holds.
In the part I (the article) we consider the so-called first renewal process $\mathbf{Z}(t)$ in a regular region, which is an of analog Cramer's deviation region for random walk. The regular region includes normal and moderate deviations.
Keywords: compound multidimensional renewal process, first (second) renewal process, large deviations, integro-local limit theorems, renewal measure, Cramer's condition, deviation (rate) function, second deviation (rate) function.
Funding agency Grant number
Russian Science Foundation 18-11-00129
Received February 5, 2018, published May 4, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 60K05, 60F10
Language: Russian
Citation: A. A. Mogulskii, E. I. Prokopenko, “Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I”, Sib. Èlektron. Mat. Izv., 15 (2018), 475–502
Citation in format AMSBIB
\Bibitem{MogPro18}
\by A.~A.~Mogulskii, E.~I.~Prokopenko
\paper Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 475--502
\mathnet{http://mi.mathnet.ru/semr932}
\crossref{https://doi.org/10.17377/semi.2018.15.041}
Linking options:
  • https://www.mathnet.ru/eng/semr932
  • https://www.mathnet.ru/eng/semr/v15/p475
    Cycle of papers
    This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :63
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024