|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
S. V. Zakharov, “Constructing the asymptotics of a solution of the heat equation from the known asymptotics of the initial function in three-dimensional space”, Mat. Sb., 215:1 (2024), 112–130 ; Sb. Math., 215:1 (2024), 101–118 |
2. |
S. V. Zakharov, “Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit”, TMF, 219:1 (2024), 3–11 ; Theoret. and Math. Phys., 219:1 (2024), 531–538 |
|
2023 |
3. |
S. V. Zakharov, “Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity”, Funktsional. Anal. i Prilozhen., 57:4 (2023), 60–74 ; Funct. Anal. Appl., 57:4 (2023), 314–325 |
4. |
S. V. Zakharov, “Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 77–90 ; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S257–S269 |
|
2022 |
5. |
S. V. Zakharov, “Matching of asymptotic solutions of a parabolic equation in the Cauchy problem with the multiscale evolution of a singularity”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 96–110 |
6. |
Sergey V. Zakharov, “Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time”, Ural Math. J., 8:1 (2022), 136–144 |
1
|
|
2021 |
7. |
Sergey V. Zakharov, “The asymptotics of a solution of the multidimensional heat equation with unbounded initial data”, Ural Math. J., 7:1 (2021), 168–177 |
1
|
|
2020 |
8. |
S. V. Zakharov, “Singular points and asymptotics in the singular Cauchy problem for the parabolic equation with a small parameter”, Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020), 841–852 ; Comput. Math. Math. Phys., 60:5 (2020), 821–832 |
3
|
|
2019 |
9. |
S. V. Zakharov, “Asymptotics of the solution of the Cauchy problem for the evolutionary Airy equation at large times”, Funktsional. Anal. i Prilozhen., 53:3 (2019), 89–91 |
10. |
Sergey V. Zakharov, “Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types”, Ural Math. J., 5:1 (2019), 101–108 |
|
2018 |
11. |
S. V. Zakharov, “Asymptotic solution of the multidimensional Burgers equation near a singularity”, TMF, 196:1 (2018), 42–49 ; Theoret. and Math. Phys., 196:1 (2018), 976–982 |
5
|
|
2017 |
12. |
S. V. Zakharov, “Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 94–103 ; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 191–200 |
1
|
13. |
A. R. Danilin, S. V. Zakharov, O. O. Kovrizhnykh, E. F. Lelikova, I. V. Pershin, O. Yu. Khachay, “The Yekaterinburg heritage of Arlen Mikhailovich Il'in”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 42–66 |
2
|
14. |
S. V. Zakharov, A. E. Elbert, “Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics”, Ufimsk. Mat. Zh., 9:1 (2017), 42–54 ; Ufa Math. J., 9:1 (2017), 41–53 |
1
|
15. |
Alexander E. Elbert, Sergey V. Zakharov, “Dispersive rarefaction wave with a large initial gradient”, Ural Math. J., 3:1 (2017), 33–43 |
|
2016 |
16. |
S. V. Zakharov, “Asymptotic calculation of the heat distribution on a plane”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 93–99 ; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 243–249 |
2
|
|
2015 |
17. |
S. V. Zakharov, “Singularities of $A$ and $B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 82–85 ; Funct. Anal. Appl., 49:4 (2015), 307–310 |
6
|
18. |
S. V. Zakharov, “Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 97–104 |
2
|
|
2014 |
19. |
S. V. Zakharov, “Justification of the asymptotics of solutions of the Navier–Stokes system for low Reynolds numbers”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 161–167 |
|
2013 |
20. |
S. V. Zakharov, “Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 119–124 |
1
|
21. |
S. V. Zakharov, “Renormalization in the Cauchy problem for the Korteweg–de Vries equation”, TMF, 175:2 (2013), 173–177 ; Theoret. and Math. Phys., 175:2 (2013), 592–595 |
3
|
|
2012 |
22. |
S. V. Zakharov, “Regular asymptotics of a generalized solution of the stationary Navier–Stokes system”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012), 108–113 ; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 146–151 |
3
|
|
2011 |
23. |
S. V. Zakharov, “Renormalization in the Causy problem with two small parameters”, Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14, 79–84 |
|
2010 |
24. |
S. V. Zakharov, “The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 699–706 ; Comput. Math. Math. Phys., 50:4 (2010), 665–672 |
11
|
|
2007 |
25. |
S. V. Zakharov, “A construction of a solution to the Burgers equation with a specified asymptotics”, Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 80–85 ; Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S243–S249 |
|
2006 |
26. |
S. V. Zakharov, “Heat Distribution in an Infinite Rod”, Mat. Zametki, 80:3 (2006), 379–385 ; Math. Notes, 80:3 (2006), 366–371 |
10
|
27. |
S. V. Zakharov, “Asymptotic solution of a Cauchy problem in a neighbourhood
of a gradient catastrophe”, Mat. Sb., 197:6 (2006), 47–62 ; Sb. Math., 197:6 (2006), 835–851 |
7
|
|
2004 |
28. |
S. V. Zakharov, “The nucleation of a shock wave in the Cauchy problem for the Burgers equation”, Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004), 536–542 ; Comput. Math. Math. Phys., 44:3 (2004), 506–513 |
7
|
|
2001 |
29. |
S. V. Zakharov, A. M. Il'in, “From weak discontinuity to gradient catastrophe”, Mat. Sb., 192:10 (2001), 3–18 ; Sb. Math., 192:10 (2001), 1417–1433 |
24
|
|
Organisations |
|
|
|
|