Abstract:
A regular asymptotic series is constructed for a generalized solution of the stationary system of Navier–Stokes equations in a bounded domain of three-dimensional space under a constraint on the generalized Reynolds number. A theorem on the approximation to any degree of accuracy of the exact solution of a homogeneous boundary value problem by partial sums of the series is proved.
Citation:
S. V. Zakharov, “Regular asymptotics of a generalized solution of the stationary Navier–Stokes system”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 108–113; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 146–151
\Bibitem{Zak12}
\by S.~V.~Zakharov
\paper Regular asymptotics of a~generalized solution of the stationary Navier--Stokes system
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 108--113
\mathnet{http://mi.mathnet.ru/timm812}
\elib{https://elibrary.ru/item.asp?id=17736190}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 146--151
\crossref{https://doi.org/10.1134/S0081543813050143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879173624}
Linking options:
https://www.mathnet.ru/eng/timm812
https://www.mathnet.ru/eng/timm/v18/i2/p108
This publication is cited in the following 3 articles:
S. A. Berestova, E. Yu. Prosviryakov, “An Inhomogeneous Steady-State Convection
of a Vertical Vortex Fluid”, Rus. J. Nonlin. Dyn., 19:2 (2023), 167–186
S. V. Zakharov, “Obosnovanie asimptotik reshenii sistemy Nave–Stoksa pri malykh chislakh Reinoldsa”, Tr. IMM UrO RAN, 20, no. 2, 2014, 161–167
S. V. Zakharov, “Asimptotika obobschennogo resheniya statsionarnoi sistemy Nave–Stoksa na mnogoobrazii, diffeomorfnom sfere”, Tr. IMM UrO RAN, 19, no. 4, 2013, 119–124