Abstract:
The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases where the solution of the limit problem has a point of gradient catastrophe.
The integrals determining the leading approximation correspond to the Lagrange singularity of type A3
and the boundary singularity of type B3. For another choice of the initial function, singular points corresponding to A2n+1 and B2n+1 with arbitrary n⩾1 are obtained.
Citation:
S. V. Zakharov, “Singularities of A and B Types in Asymptotic Analysis of Solutions of a Parabolic Equation”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 82–85; Funct. Anal. Appl., 49:4 (2015), 307–310
\Bibitem{Zak15}
\by S.~V.~Zakharov
\paper Singularities of~$A$ and~$B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 82--85
\mathnet{http://mi.mathnet.ru/faa3206}
\crossref{https://doi.org/10.4213/faa3206}
\elib{https://elibrary.ru/item.asp?id=24849985}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 307--310
\crossref{https://doi.org/10.1007/s10688-015-0120-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949947786}
Linking options:
https://www.mathnet.ru/eng/faa3206
https://doi.org/10.4213/faa3206
https://www.mathnet.ru/eng/faa/v49/i4/p82
This publication is cited in the following 6 articles:
S. V. Zakharov, “Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S257–S269
S. V. Zakharov, “Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity”, Funct. Anal. Appl., 57:4 (2023), 314–325
S. V. Zakharov, “Singular points and asymptotics in the singular Cauchy problem for the parabolic equation with a small parameter”, Comput. Math. Math. Phys., 60:5 (2020), 821–832
Sergey V. Zakharov, “Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types”, Ural Math. J., 5:1 (2019), 101–108
S. V. Zakharov, “Asymptotic solution of the multidimensional Burgers equation near a singularity”, Theoret. and Math. Phys., 196:1 (2018), 976–982
A. R. Danilin, S. V. Zakharov, O. O. Kovrizhnykh, E. F. Lelikova, I. V. Pershin, O. Yu. Khachai, “Ekaterinburgskoe nasledie Arlena Mikhailovicha Ilina”, Tr. IMM UrO RAN, 23, no. 2, 2017, 42–66