Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 3, Pages 431–448
DOI: https://doi.org/10.1070/IM2015v079n03ABEH002749
(Mi im8266)
 

This article is cited in 11 scientific papers (total in 11 papers)

A criterion for the best uniform approximation by simple partial fractions in terms of alternance

M. A. Komarov

Vladimir State University
References:
Abstract: We consider the problem of best uniform approximation of real continuous functions f by simple partial fractions of degree at most n on a closed interval S of the real axis. We get analogues of the classical polynomial theorems of Chebyshev and de la Vallée-Poussin. We prove that a real-valued simple partial fraction Rn of degree n whose poles lie outside the disc with diameter S, is a simple partial fraction of the best approximation to f if and only if the difference fRn admits a Chebyshev alternance of n+1 points on S. Then Rn is the unique fraction of best approximation. We show that the restriction on the poles is unimprovable. Particular cases of the theorems obtained have been stated by various authors only as conjectures.
Keywords: simple partial fraction, approximation, alternance, uniqueness, the Haar condition.
Received: 11.06.2014
Revised: 30.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 41A20, 41A50
Language: English
Original paper language: Russian
Citation: M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448
Citation in format AMSBIB
\Bibitem{Kom15}
\by M.~A.~Komarov
\paper A criterion for the best uniform approximation by simple partial fractions in terms of alternance
\jour Izv. Math.
\yr 2015
\vol 79
\issue 3
\pages 431--448
\mathnet{http://mi.mathnet.ru/eng/im8266}
\crossref{https://doi.org/10.1070/IM2015v079n03ABEH002749}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397410}
\zmath{https://zbmath.org/?q=an:06470378}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..431K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356834500001}
\elib{https://elibrary.ru/item.asp?id=23780143}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937718565}
Linking options:
  • https://www.mathnet.ru/eng/im8266
  • https://doi.org/10.1070/IM2015v079n03ABEH002749
  • https://www.mathnet.ru/eng/im/v79/i3/p3
  • This publication is cited in the following 11 articles:
    1. M. A. Komarov, “O skorosti interpolyatsii naiprosteishimi drobyami analiticheskikh funktsii s regulyarno ubyvayuschimi koeffitsientami”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 23:2 (2023), 157–168  mathnet  crossref
    2. M. A. Komarov, “On the rate of approximation in the unit disc of H1-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. M. A. Komarov, “Extremal Properties of Logarithmic Derivatives of Polynomials”, J Math Sci, 250:1 (2020), 1  crossref
    4. M. A. Komarov, “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33  mathnet  crossref  isi
    5. M. A. Komarov, “On approximation by special differences of simplest fractions”, St. Petersburg Math. J., 30:4 (2019), 655–665  mathnet  crossref  mathscinet  isi  elib
    6. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
    7. M. A. Komarov, “Estimates of the Best Approximation of Polynomials by Simple Partial Fractions”, Math. Notes, 104:6 (2018), 848–858  mathnet  crossref  crossref  mathscinet  isi  elib
    8. M. A. Komarov, “Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis”, J Math Sci, 235:2 (2018), 168  crossref
    9. M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II”, Izv. Math., 81:3 (2017), 568–591  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    11. M. A. Komarov, “Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance”, Math. Notes, 97:5 (2015), 725–737  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:931
    Russian version PDF:515
    English version PDF:41
    References:93
    First page:35
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025