Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 3, Pages 431–448
DOI: https://doi.org/10.1070/IM2015v079n03ABEH002749
(Mi im8266)
 

This article is cited in 11 scientific papers (total in 11 papers)

A criterion for the best uniform approximation by simple partial fractions in terms of alternance

M. A. Komarov

Vladimir State University
References:
Abstract: We consider the problem of best uniform approximation of real continuous functions $f$ by simple partial fractions of degree at most $n$ on a closed interval $S$ of the real axis. We get analogues of the classical polynomial theorems of Chebyshev and de la Vallée-Poussin. We prove that a real-valued simple partial fraction $R_n$ of degree $n$ whose poles lie outside the disc with diameter $S$, is a simple partial fraction of the best approximation to $f$ if and only if the difference $f-R_n$ admits a Chebyshev alternance of $n+1$ points on $S$. Then $R_n$ is the unique fraction of best approximation. We show that the restriction on the poles is unimprovable. Particular cases of the theorems obtained have been stated by various authors only as conjectures.
Keywords: simple partial fraction, approximation, alternance, uniqueness, the Haar condition.
Received: 11.06.2014
Revised: 30.01.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2015, Volume 79, Issue 3, Pages 3–22
DOI: https://doi.org/10.4213/im8266
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 41A20, 41A50
Language: English
Original paper language: Russian
Citation: M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. RAN. Ser. Mat., 79:3 (2015), 3–22; Izv. Math., 79:3 (2015), 431–448
Citation in format AMSBIB
\Bibitem{Kom15}
\by M.~A.~Komarov
\paper A criterion for the best uniform approximation by simple partial fractions in terms of alternance
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 3
\pages 3--22
\mathnet{http://mi.mathnet.ru/im8266}
\crossref{https://doi.org/10.4213/im8266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397410}
\zmath{https://zbmath.org/?q=an:06470378}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..431K}
\elib{https://elibrary.ru/item.asp?id=23780143}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 3
\pages 431--448
\crossref{https://doi.org/10.1070/IM2015v079n03ABEH002749}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356834500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937718565}
Linking options:
  • https://www.mathnet.ru/eng/im8266
  • https://doi.org/10.1070/IM2015v079n03ABEH002749
  • https://www.mathnet.ru/eng/im/v79/i3/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:828
    Russian version PDF:483
    English version PDF:23
    References:76
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024