Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 3, Pages 568–591
DOI: https://doi.org/10.1070/IM8548
(Mi im8548)
 

This article is cited in 8 scientific papers (total in 8 papers)

A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II

M. A. Komarov

Vladimir State University
References:
Abstract: In the problem of approximating real functions $f$ by simple partial fractions of order ${\le}\,n$ on closed intervals $K=[c-\varrho,c+\varrho]\subset\mathbb{R}$, we obtain a criterion for the best uniform approximation which is similar to Chebyshev's alternance theorem and considerably generalizes previous results: under the same condition $z_j^*\notin B(c,\varrho)= \{z\colon|z-c|\le\varrho\}$ on the poles $z_j^*$ of the fraction $\rho^*(n,f,K;x)$ of best approximation, we omit the restriction $k=n$ on the order $k$ of this fraction. In the case of approximation of odd functions on $[-\varrho,\varrho]$, we obtain a similar criterion under much weaker restrictions on the position of the poles $z_j^*$: the disc $B(0,\varrho)$ is replaced by the domain bounded by a lemniscate contained in this disc. We give some applications of this result. The main theorems are extended to the case of weighted approximation. We give a lower bound for the distance from $\mathbb{R}^+$ to the set of poles of all simple partial fractions of order ${\le}\,n$ which are normalized with weight $2\sqrt x$ on $\mathbb{R}^+$ (a weighted analogue of Gorin's problem on the semi-axis).
Keywords: simple partial fraction, approximation, alternance, uniqueness, disc, odd function, lemniscate.
Received: 15.03.2016
Revised: 05.05.2016
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2017, Volume 81, Issue 3, Pages 109–133
DOI: https://doi.org/10.4213/im8548
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 41A20, 41A50
Language: English
Original paper language: Russian
Citation: M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II”, Izv. RAN. Ser. Mat., 81:3 (2017), 109–133; Izv. Math., 81:3 (2017), 568–591
Citation in format AMSBIB
\Bibitem{Kom17}
\by M.~A.~Komarov
\paper A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 3
\pages 109--133
\mathnet{http://mi.mathnet.ru/im8548}
\crossref{https://doi.org/10.4213/im8548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3659548}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..568K}
\elib{https://elibrary.ru/item.asp?id=29254885}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 3
\pages 568--591
\crossref{https://doi.org/10.1070/IM8548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408479100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85025464298}
Linking options:
  • https://www.mathnet.ru/eng/im8548
  • https://doi.org/10.1070/IM8548
  • https://www.mathnet.ru/eng/im/v81/i3/p109
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:613
    Russian version PDF:149
    English version PDF:10
    References:82
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024