Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 3, Pages 449–466
DOI: https://doi.org/10.1070/IM2015v079n03ABEH002750
(Mi im8176)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the asymptotics of the mean sojourn time of a random walk on a semi-axis

V. I. Lotovab, A. S. Tarasenkoab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: We find asymptotic expansions for the expectation of the sojourn time above an increasing level of a trajectory of a random walk with zero drift. The Cramér condition on the existence of an exponential moment is imposed on the distribution of jumps of the random walk.
Keywords: random walk, sojourn time, asymptotic analysis.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00046
This work was financially supported by the Russian Foundation for Basic Research (grant no. 13-01-00046).
Received: 15.10.2013
Revised: 29.09.2014
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: 60G50
Language: English
Original paper language: Russian
Citation: V. I. Lotov, A. S. Tarasenko, “On the asymptotics of the mean sojourn time of a random walk on a semi-axis”, Izv. Math., 79:3 (2015), 449–466
Citation in format AMSBIB
\Bibitem{LotTar15}
\by V.~I.~Lotov, A.~S.~Tarasenko
\paper On the asymptotics of the mean sojourn time of a~random walk on a~semi-axis
\jour Izv. Math.
\yr 2015
\vol 79
\issue 3
\pages 449--466
\mathnet{http://mi.mathnet.ru//eng/im8176}
\crossref{https://doi.org/10.1070/IM2015v079n03ABEH002750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397411}
\zmath{https://zbmath.org/?q=an:06470379}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..449L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356834500002}
\elib{https://elibrary.ru/item.asp?id=23780144}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937722409}
Linking options:
  • https://www.mathnet.ru/eng/im8176
  • https://doi.org/10.1070/IM2015v079n03ABEH002750
  • https://www.mathnet.ru/eng/im/v79/i3/p23
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:625
    Russian version PDF:176
    English version PDF:28
    References:93
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024