Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 5, Pages 881–921
DOI: https://doi.org/10.1070/im1999v063n05ABEH000265
(Mi im265)
 

This article is cited in 10 scientific papers (total in 10 papers)

The problem of general Radon representation for an arbitrary Hausdorff space

V. K. Zakharova, A. V. Mikhalevb

a St. Petersburg State University of Technology and Design
b M. V. Lomonosov Moscow State University
References:
Abstract: After the fundamental work of Riesz, Radon and Hausdorff in the period 1909–1914, the following problem of general Radon representation emerged: for any Hausdorff space find the space of linear functionals that are integrally representable by Radon measures. In the early 1950s, a partial solution of this problem (the bijective version) for locally compact spaces was obtained by Halmos, Hewitt, Edwards, Bourbaki and others. For bounded Radon measures on a Tychonoff space, the problem of isomorphic Radon representation was solved in 1956 by Prokhorov.
In this paper we give a possible solution of the problem of general Radon representation. To do this, we use the family of metasemicontinuous functions with compact support and the class of thin functionals. We present bijective and isomorphic versions of the solution (Theorems 1 and 2 of § 2.5). To get the isomorphic version, we introduce the family of Radon bimeasures.
Received: 19.12.1997
Bibliographic databases:
MSC: 28A25, 28C05
Language: English
Original paper language: Russian
Citation: V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space”, Izv. Math., 63:5 (1999), 881–921
Citation in format AMSBIB
\Bibitem{ZakMik99}
\by V.~K.~Zakharov, A.~V.~Mikhalev
\paper The problem of general Radon representation for an arbitrary Hausdorff space
\jour Izv. Math.
\yr 1999
\vol 63
\issue 5
\pages 881--921
\mathnet{http://mi.mathnet.ru/eng/im265}
\crossref{https://doi.org/10.1070/im1999v063n05ABEH000265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1727590}
\zmath{https://zbmath.org/?q=an:0967.28012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085381600002}
Linking options:
  • https://www.mathnet.ru/eng/im265
  • https://doi.org/10.1070/im1999v063n05ABEH000265
  • https://www.mathnet.ru/eng/im/v63/i5/p37
    Cycle of papers
    This publication is cited in the following 10 articles:
    1. Machsoudi S. Rejali A., “on the Dual of Certain Locally Convex Function Spaces”, Bull. Iran Math. Soc., 41:4 (2015), 1003–1017  mathscinet  isi
    2. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Descriptive spaces and proper classes of functions”, J. Math. Sci., 213:2 (2016), 163–200  mathnet  crossref  mathscinet
    3. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Postclassical families of functions proper for descriptive and prescriptive spaces”, J. Math. Sci., 221:3 (2017), 360–383  mathnet  crossref  mathscinet
    4. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices”, J. Math. Sci., 185:3 (2012), 417–429  mathnet  crossref
    5. Heinz König, Measure and Integration, 2012, 149  crossref
    6. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Russian Math. Surveys, 65:4 (2010), 741–765  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of Radon integrals as linear functionals”, J. Math. Sci., 185:2 (2012), 233–281  mathnet  crossref  mathscinet
    8. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of general Radon integrals”, Dokl. Math., 82:1 (2010), 613  crossref
    9. V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Proc. Steklov Inst. Math., 248 (2005), 101–110  mathnet  mathscinet  zmath
    10. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space. II”, Izv. Math., 66:6 (2002), 1087–1101  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:603
    Russian version PDF:239
    English version PDF:29
    References:101
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025