Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1999, Volume 63, Issue 5, Pages 923–962
DOI: https://doi.org/10.1070/im1999v063n05ABEH000260
(Mi im260)
 

The space of parallel linear networks with a fixed boundary

A. O. Ivanov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper we study the structure of the set $[G,\varphi]_\Gamma$ of immersed linear networks in $\mathbb R^N$ that are parallel to a given immersed linear network $\Gamma\colon G\to\mathbb R^N$ and whose boundary $\varphi$ coincides with the boundary of $\Gamma$. We prove that $[G,\varphi]_\Gamma$ is a convex polyhedral subset in the configuration space of moving vertices of the graph $G$. We also calculate the dimension of this convex subset and estimate the number of its faces of maximal dimension. The results obtained are used to describe the space of all locally minimal (weighted minimal) networks in $\mathbb R^N$ with a fixed topology and a fixed boundary. In the case of planar networks in which the degrees of vertices are at most three (Steiner networks), this dimension is calculated in topological terms.
Received: 17.02.1998
Bibliographic databases:
MSC: 05C35, 90C35
Language: English
Original paper language: Russian
Citation: A. O. Ivanov, A. A. Tuzhilin, “The space of parallel linear networks with a fixed boundary”, Izv. Math., 63:5 (1999), 923–962
Citation in format AMSBIB
\Bibitem{IvaTuz99}
\by A.~O.~Ivanov, A.~A.~Tuzhilin
\paper The space of parallel linear networks with a~fixed boundary
\jour Izv. Math.
\yr 1999
\vol 63
\issue 5
\pages 923--962
\mathnet{http://mi.mathnet.ru//eng/im260}
\crossref{https://doi.org/10.1070/im1999v063n05ABEH000260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1727591}
\zmath{https://zbmath.org/?q=an:0967.05039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085381600003}
Linking options:
  • https://www.mathnet.ru/eng/im260
  • https://doi.org/10.1070/im1999v063n05ABEH000260
  • https://www.mathnet.ru/eng/im/v63/i5/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:454
    Russian version PDF:197
    English version PDF:22
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024