Loading [MathJax]/jax/output/CommonHTML/jax.js
Теория вероятностей и ее применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятностей и ее применения, 1995, том 40, выпуск 1, страницы 220–225 (Mi tvp3440)  

Краткие сообщения

Characterizations of completion regularity of measures

D. Plachky

Institute of Mathematical Statistics, University of Münster, Münster, West Germany
Аннотация: A bounded, positive charge ν on an algebra A is said to be completion regular with respect to some algebra B containing A if for any BB and ε>0 there exist AjA, j=1,2, satisfying A1BA2 and ν(A2sA1)ε. It is shown that a finite measure μ on a σ-algebra A is completion regular with respect to some σ-algebra B containing A if and only if the following two conditions are satisfied: (i) μ can be extended uniquely to B as a finite measure, (ii) the family of all sets BB with μ(B)=0, where μ denotes the inner measure of μ, is closed with respect to countable unions. In general assumption (ii) cannot be dropped. However, (ii) can be omitted in the following two special cases: (i) B is generated by A and a finite number of pairwise disjoint sets, (ii) A consists of the set of G-invariant sets belonging to B, where G is a finite group of (A,A)-measurable mappings g:ΩΩ. Furthermore, any finite measure ν on A can be decomposed uniquely as μ+λ, where μ is a finite measure on A, which is completion regular with respect to B, and λ is a finite measure on A, which is singular with respect to any finite measure on A of the type of μ. This decomposition is multiplicative. Finally it is shown that in the case where A is an algebra having the Seever property and B stands for the σ-algebra σ(A) generated by A, the property of a bounded, positive charge ν on A to be completion regular with respect to B and σ-additive is equivalent to the completion regularity of ¯ν on ¯A relative to σ(¯A), where (¯A,¯ν) is the Stonian representation of (A,ν).
Ключевые слова: completion regularity of a charge with respect to an algebra, extension of a measure, absolute continuity of measures, a marginal measure.
Поступила в редакцию: 20.06.1991
Англоязычная версия:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 181–186
DOI: https://doi.org/10.1137/1140019
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: D. Plachky, “Characterizations of completion regularity of measures”, Теория вероятн. и ее примен., 40:1 (1995), 220–225; Theory Probab. Appl., 40:1 (1995), 181–186
Цитирование в формате AMSBIB
\RBibitem{Pla95}
\by D.~Plachky
\paper Characterizations of completion regularity of measures
\jour Теория вероятн. и ее примен.
\yr 1995
\vol 40
\issue 1
\pages 220--225
\mathnet{http://mi.mathnet.ru/tvp3440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346748}
\zmath{https://zbmath.org/?q=an:0840.28003|0837.28004}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 181--186
\crossref{https://doi.org/10.1137/1140019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100019}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tvp3440
  • https://www.mathnet.ru/rus/tvp/v40/i1/p220
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Статистика просмотров:
    Страница аннотации:197
    PDF полного текста:75
    Первая страница:9
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025