Аннотация:
For finite-dimensional array X(m)=X(m1,…,mk) of independent identically distributed Banach space valued random variables we consider sums S(n)=S(n1,…,nk) of X(m) over mi∈{1,…,ni}(i−1,…,k). Under some conditions on individual random variable X and on the geometry of Banach space the strong law of large numbers for S(n) and estimates for large deviations as maxni→∞ are obtained.
Ключевые слова:Banach space valued random Variables, law of large numbers for multidimensional sums, large deviation probabilities.
Образец цитирования:
Nguyen Van Giang, “Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters”, Теория вероятн. и ее примен., 40:1 (1995), 213–219; Theory Probab. Appl., 40:1 (1995), 175–181