Аннотация:
Предлагается итерационный метод решения уравнения $\Upsilon(x,x)=y$, в котором отображение $\Upsilon$ действует в метрических пространствах, является накрывающим по первому аргументу и липшицевым по второму. Каждый следующий элемент $x_{i+1}$ последовательности итераций определяется через предыдущий как решение уравнения $\Upsilon(x,x_i)=y_i$, где $y_i$ может быть любым достаточно близким к $y$ элементом. Получены условия сходимости, даны оценки погрешности. Предлагаемый метод является развитием итерационного метода А. В. Арутюнова нахождения точек совпадения отображений. Для практической реализации метода в линейных нормированных пространствах для определения $x_{i+1}$ предлагается выполнить один шаг методом Ньютона–Канторовича. Полученный таким образом метод, в случае если имеет место представление $\Upsilon(x,u)=\psi(x)-\phi(u)$, совпадает с итерационным методом, предложенным в работах А. И. Зинченко, М. А. Красносельского, И. А. Кусакина.
Ключевые слова:
итерационные методы решения уравнений, накрывающие отображения метрических пространств, приближенное решение.
Образец цитирования:
Т. В. Жуковская, Е. С. Жуковский, “Об итерационных методах решения уравнений с накрывающими отображениями”, Сиб. журн. вычисл. матем., 19:4 (2016), 357–369; Num. Anal. Appl., 9:4 (2016), 277–287
А. В. Арутюнов, Е. А. Плужникова, “О задаче Коши для неявных дифференциальных уравнений высших порядков”, Вестник российских университетов. Математика, 26:136 (2021), 348–362
A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology Appl., 275 (2020), 107030
Е. О. Бурлаков, Т. В. Жуковская, Е. С. Жуковский, Н. П. Пучков, “Приложения накрывающих отображений в теории неявных дифференциальных уравнений”, Материалы IV Международной научной конференции “Актуальные проблемы
прикладной математики”. Кабардино-Балкарская республика, Нальчик, Приэльбрусье, 22–26 мая 2018 г. Часть I, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 165, ВИНИТИ РАН, М., 2019, 21–33