Аннотация:
It was shown recently that many of the Gustafson integrals appear in studies of the $\mathrm{SL}(2,\mathbb{R})$ spin chain models. One can hope to obtain a generalization of the Gustafson integrals considering spin chain models with a different symmetry group. In this paper we analyse the spin magnet with the $\mathrm{SL}(2,\mathbb{C})$ symmetry group in case of open and periodic boundary conditions and derive several new integrals.
Ключевые слова:Baxter operators; separation of variables.
Образец цитирования:
Sergey É. Derkachov, Alexander N. Manashov, Pavel A. Valinevich, “$\mathrm{SL}(2,\mathbb{C})$ Gustafson Integrals”, SIGMA, 14 (2018), 030, 16 pp.
G. A. Sarkissian, V. P. Spiridonov, “Elliptic and Complex Hypergeometric Integrals in Quantum Field Theory”, Phys. Part. Nuclei Lett., 20:3 (2023), 281
Yury A. Neretin, “On the Dotsenko–Fateev complex twin of the Selberg integral and its extensions”, Ramanujan J, 2023
S. E. Derkachev, A. V. Ivanov, L. A. Shumilov, “Mellin–Barnes Transformation for Two-Loop Master-Diagram”, J Math Sci, 264:3 (2022), 298
Pavel V Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of gln(C)”, J. Phys. A: Math. Theor., 55:22 (2022), 225201
А. В. Иванов, “Об интегралах Густафсона для группы $\mathrm{SL}(2,\mathbb{R})$”, Вопросы квантовой теории поля и статистической физики. 28, Зап. научн. сем. ПОМИ, 509, ПОМИ, СПб., 2021, 113–122
Yury A. Neretin, “An analog of the Dougall formula and of the de Branges–Wilson integral”, Ramanujan J, 54:1 (2021), 93
Sergey È. Derkachov, Alexander N. Manashov, “On Complex Gamma-Function Integrals”, SIGMA, 16 (2020), 003, 20 pp.
Yury A. Neretin, “Barnes–Ismagilov Integrals and Hypergeometric Functions of the Complex Field”, SIGMA, 16 (2020), 072, 20 pp.
Gor A. Sarkissian, Vyacheslav P. Spiridonov, “The Endless Beta Integrals”, SIGMA, 16 (2020), 074, 21 pp.
С. Э. Деркачёв, А. В. Иванов, Л. А. Шумилов, “Преобразование Меллина–Барнса для двухпетлевой мастер-диаграммы”, Вопросы квантовой теории поля и статистической физики. 27, Зап. научн. сем. ПОМИ, 494, ПОМИ, СПб., 2020, 144–167