Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2013
21 июля 2013 г. 17:00, г. Дубна
 


Асимптотические задачи комбинаторики. Лекция 1

В. А. Клепцын
Видеозаписи:
Flash Video 464.3 Mb
MP4 607.4 Mb

Количество просмотров:
Эта страница:647
Видеофайлы:286

В. А. Клепцын



Аннотация: Многие интересные задачи в комбинаторике формулируются в терминах «как выглядит случайный большой объект» или «сколько есть таких объектов данного размера». К примеру, в случайной последовательности нулей и единиц большой длины $n$ нулей и единиц примерно поровну, а в разложении случайной перестановки $n$ элементов в произведение независимых циклов, скорее всего, есть «большой» цикл (имеющий сравнимую с $n$ длину), а всего циклов порядка логарифма $n$.
Оказывается, что задачи «подсчитать количество» и «найти предельный вид» зачастую связаны друг с другом. Мы разберём такую связь, решив (лишь на физическом уровне строгости!) несколько таких задач:
  • Как выглядит типичное разбиение числа n в сумму невозрастающих слагаемых? Какова асимптотика количества таких разбиений (формула Харди–Рамануджана)?
  • Что такое аффинная длина, и как выглядит типичная ломаная, идущая из вершины $(0,1)$ в вершину $(1,0)$ единичного квадрата, если её вершины принадлежат решётке с шагом $1/n$?
  • Как посчитать, сколькими способами на доминошки можно разрезать данную плоскую фигуру? Как выглядит типичное разбиение ацтекского бриллианта на доминошки? Откуда берётся «полярный круг», за которым все доминошки оказываются «замороженными»? И какое к этому отношение имеет угол кристалла и кубики, сложенные в углу комнаты?

Курс предназначен для студентов и школьников, знакомых с началами анализа.

Website: https://www.mccme.ru/dubna/2013/courses/kleptsyn.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024