Аннотация:
Пусть задана конечная подгруппа $G\subset SL_2(\mathbb C)$. Тогда естественно рассмотреть фактор $\mathbb C^2$ по её действию; такой фактор будет комплексно-двумерен, но не будет многообразием: начало координат будет особой точкой. К этой особой точке можно применить (стандартную) процедуру разрешения особенностей.
Простейший пример получается при $G = \mathbb Z/2$, которая действует на $\mathbb C^2$ по формуле $(x, y) \mapsto (-x, -y)$.
При этом факторпространство $X = \mathbb C^2/G$ оказывается квадратичным конусом $u^2 + v^2 + w^2 = 0$ в $\mathbb C^3$
(так называемая особенность типа $A_1$), а разрешение особенности $Y \to X$ раздувает вершину
этого конуса, вклеивая вместо неё одну рациональную кривую.
Когда разрешение особенностей требует несколько шагов, вклеиваемые кривые могут пересекаться,
задавая граф (в простейшем случае выше это одноточечный граф $A_1$). С другой стороны, по
представлениям группы $G$ можно построить граф Маккея. Оказывается, эти два графа изоморфны; более
того, между ними есть явный изоморфизм — который и называется соответствием Маккея.
Соответствие Маккея находится на пересечении коммутативной алгебры, алгебраической геометрии, теории особенностей и теории представлений и является элементарным и увлекательным введением в каждую из этих областей.
Предполагаются известными основы алгебры, то есть векторные пространства, кольца, группы, алгебры над полем, факторгруппы и факторкольца, максимальные и простые идеалы в кольце, а также что такое линейное действие конечной группы на векторном пространстве. Также хорошо (но необязательно) знать теорему Гильберта о нулях и что такое многообразие (алгебраическое или хотя бы гладкое).
План лекций Лекция 1. Алгебраические многообразия. Соответствие между идеалами кольца функций и подмногообразиями. Особые и неособые точки многообразий. Факторы аффинных многообразий по действию конечной группы. Особенности типа $A_n$: фактор комплексной плоскости по циклической группе, уравнение для особенности $A_n$.
Лекция 2. Общие слова про диаграммы Дынкина типа ADE. Классификация конечных подгрупп в $SL_2(\mathbb C)$.
Особенности $D_n$, $E_6$, $E_7$, $E_8$: задание как фактор по бинарным группам и уравнение особенности.
Если останется время: случай конечных подгрупп $GL_2(\mathbb C).$ Лекция 3. Раздутие поверхностей. Диаграммы Дынкина и разрешение особенностей $A_n$, $D_n$, $E_6$, $E_7$, $E_8$.
Соответствие Маккея.