Аннотация:
Гармонический анализ на некомпактных римановых симметрических пространствах в некотором смысле эквивалентен теории орисферического преобразования. На компактных симметрических пространствах нет орисфер, но мы определяем комплексный вариант орисферического преобразования, который играет для них аналогичную роль.
Dimitar Grantcharov, Gueo Grantcharov, Camilo Montoya, “Laplace Eigenfunctions on Riemannian Symmetric Spaces and Borel–Weil Theorem”, International Mathematics Research Notices, 2023:16 (2023), 13940
Gindikin S., “Complex Analysis on the Real Sphere, Or Variations on a Maxwell'S Theme”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, eds. Kuchment P., Semenov E., Amer Mathematical Soc, 2019, 167–174
Grantcharov D., Grantcharov G., “Relations Between Laplace Spectra and Geometric Quantization of Reimannian Symmetric Spaces”, J. Geom. Symmetry Phys., 51 (2019), 9–28
Gindikin S., “Harmonic Analysis on Symmetric Spaces as Complex Analysis”, Automorphic Forms and Related Geometry: Assessing the Legacy of i.i. Piatetski-Shapiro, Contemporary Mathematics, 614, eds. Cogdell J., Shahidi F., Soudry D., Amer Mathematical Soc, 2014, 69–80
Joachim Hilgert, Gestur Ólafsson, Developments in Mathematics, 37, Developments and Retrospectives in Lie Theory, 2014, 77
Gindikin S., Goodman R., “Restricted Roots and Restricted Form of the Weyl Dimension Formula for Spherical Varieties”, J. Lie Theory, 23:1 (2013), 257–311
Ólafsson G., Schlichtkrull H., “Fourier series on compact symmetric spaces: K-finite functions of small support \jourJ. Fourier Anal. Appl.”, 16, no. 4, 2010, 609–628