|
Фундаментальная и прикладная математика, 2023, том 24, выпуск 3, страницы 39–103
(Mi fpm1935)
|
|
|
|
Топологические радикалы Джекобсона. III
С. Т. Главацкийa, А. Ю. Голубковb, А. В. Михалёвa a Московский государственный университет им. М. В. Ломоносова
b Московский государственный технический университет им. Н. Э. Баумана
Аннотация:
В работе приводятся варианты топологических радикалов Джекобсона алгебр в квазирегулярном и модульном вариантах определения, которые используют идеи конструкции радикала Брауна–Маккоя и описания радикала Джекобсона альтернативных алгебр.
Ключевые слова:
левое (правое) представление алгебры в многообразии, ассоциативный слева (справа) элемент, радикал Джекобсона (Смайли–Клейнфелда–Жевлакова) альтернативных алгебр, топологически $\alpha$-квазирегулярный элемент, $\alpha$-ограниченная алгебра, $\alpha$-модулярный подмодуль, топологически квазирегулярный элемент альтернативной (линейной йордановой) алгебры, слабо $\Sigma$-разрешимая алгебра, $\Sigma$-$2$-ниль-алгебра, $\Sigma$-алгебраический элемент над идеалом.
Образец цитирования:
С. Т. Главацкий, А. Ю. Голубков, А. В. Михалёв, “Топологические радикалы Джекобсона. III”, Фундамент. и прикл. матем., 24:3 (2023), 39–103; J. Math. Sci., 283:6 (2024), 849–895
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/fpm1935 https://www.mathnet.ru/rus/fpm/v24/i3/p39
|
|