|
Чебышевский сборник, 2015, том 16, выпуск 3, страницы 95–123
(Mi cheb411)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Оценка снизу константы Джексона в пространствах $L_p$ на сфере с весом Данкля, связанным с группой диэдра
Р. А. Вепринцев Тульский государственный университет
Аннотация:
В конце 80-х и начале 90-х годов прошлого века американский математик Ч. Данкль (C. F. Dunkl) создал основу
для теории специальных функций многих переменных, связанных с группами отражений, и их интегральных преобразований в ряде своих работ. Эта теория получила развитие в работах многих математиков. В настоящее время эта теория получила название теории Данкля в математической литературе. Теория Данкля находит широкие применения в теории вероятностей, математической физике, теории приближений.
Настоящая работа посвящена применению гармонического анализа Данкля в пространствах $L_p$ на евклидовом пространстве $\mathbb{R}^d$ и единичной евклидовой сфере $\mathbb{S}^{d-1}$ с весом Данкля, определяемым системой корней и связанной с ней группой отражений, к задачам теории приближений.
Задача нахождения точной константы в неравенстве Джексона, или константы Джексона, между величиной наилучшего приближения функции и ее модулем непрерывности является важной экстремальной задачей теории приближений. В работе рассматривается задача о константе Джексона в пространствах $L_p$, $1\leq p<2$, на единичной окружности $\mathbb{S}^{1}$ с весом Данкля, связанным с группой диэдра $I_m$, $m\in\mathbb{N}$. Наилучшее приближение осуществляется подпространством $\kappa$-сферических гармоник, определяемых с помощью лапласиана Данкля. Модуль непрерывности определяется с помощью оператора обобщенного сдвига, впервые появившегося в работах Ю. Шу.
В случае единичного веса, т. е. когда функция кратности $\kappa$ на системе корней тождественно равняется нулю, неравенство Джексона на единичной многомерной евклидовой сфере $\mathbb{S}^{d-1}$ с константой $2^{1/p-1}$, совпадающей с константой Юнга пространства $L_p$, было доказано Д. В. Горбачевым. Он же установил точность этой константы.
Неравенство Джексона с той же константой в пространствах $L_p$, $1\leq p<2$, на единичной многомерной евклидовой сфере $\mathbb{S}^{d-1}$ с весом Данкля, инвариантным относительно произвольной конечной группы отражений, было получено автором ранее. Теперь в работе получена оценка снизу константы Джексона в пространствах $L_p$, $1\leq p<2$, на единичной евклидовой окружности $\mathbb{S}^1$ с весом Данкля, инвариантным относительно группы диэдра $I_m$, $m\in\mathbb{N}$. При $m\geq 3$ группы диэдра — группы симметрий правильных $m$-угольников в $\mathbb{R}^2$.
При решении поставленной задачи мы существенно используем подход, разработанный В. И. Ивановым совместно с Лю Юнпином. При этом преодолеваются дополнительные трудности, связанные с появлением в пространствах $L_p[0,\pi]$, $1\leq p<2$, с весом $|\sin(t/2)|^{2\alpha +1}|\cos(t/2)|^{2\beta +1}$, $\alpha\geq\beta\geq-1/2$, нового модуля непрерывности, определяемого с помощью несимметричного оператора обобщенного сдвига.
Библиография: 33 наименования.
Ключевые слова:
евклидова сфера, вес Данкля, $\kappa$-сферические гармоники, наилучшее приближение, модуль непрерывности, неравенство Джексона, константа Джексона, группа диэдра.
Поступила в редакцию: 10.03.2015
Образец цитирования:
Р. А. Вепринцев, “Оценка снизу константы Джексона в пространствах $L_p$ на сфере с весом Данкля, связанным с группой диэдра”, Чебышевский сб., 16:3 (2015), 95–123
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cheb411 https://www.mathnet.ru/rus/cheb/v16/i3/p95
|
Статистика просмотров: |
Страница аннотации: | 373 | PDF полного текста: | 119 | Список литературы: | 78 |
|