|
Algebra and Discrete Mathematics, 2013, том 16, выпуск 1, страницы 81–95
(Mi adm436)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
RESEARCH ARTICLE
Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
A. I. Kashu Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD – 2028 MOLDOVA
Аннотация:
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category $R$-Mod are described. Using the results of [1], in this part the other classes of closure operators $C$ are characterized by the associated functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$ which separate in every module $M \in R$-Mod the sets of $C$-dense submodules and $C$-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators.
Ключевые слова:
ring, module, preradical, closure operator, dense submodule, closed submodule, hereditary (cohereditary) closure operator.
Поступила в редакцию: 03.06.2013 Исправленный вариант: 03.06.2013
Образец цитирования:
A. I. Kashu, “Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)”, Algebra Discrete Math., 16:1 (2013), 81–95
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm436 https://www.mathnet.ru/rus/adm/v16/i1/p81
|
|