|
Algebra and Discrete Mathematics, 2013, том 15, выпуск 2, страницы 213–228
(Mi adm422)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
RESEARCH ARTICLE
Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)
A. I. Kashu Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău,
MD – 2028 MOLDOVA
Аннотация:
In this work the closure operators of a category of modules $R$-Mod are studied. Every closure operator $C$ of $R$-Mod defines two functions $\mathcal{F}_1^{C}$ and $\mathcal{F}_2^{C}$, which in every module $M$ distinguish the set of $C$-dense submodules $\mathcal{F}_1^{C}(M)$ and the set of $C$-closed submodules $\mathcal{F}_2^{C}(M)$. By means of these functions three types of closure operators are described: 1) weakly hereditary; 2) idempotent; 3) weakly hereditary and idempotent.
Ключевые слова:
ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule.
Поступила в редакцию: 19.02.2013 Исправленный вариант: 25.05.2013
Образец цитирования:
A. I. Kashu, “Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)”, Algebra Discrete Math., 15:2 (2013), 213–228
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm422 https://www.mathnet.ru/rus/adm/v15/i2/p213
|
|