|
Алгебра и анализ, 2012, том 24, выпуск 1, страницы 157–222
(Mi aa1272)
|
|
|
|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Статьи
Continuous symmetrization via polarization
A. Yu. Solynin Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
Аннотация:
We discuss a one-parameter family of transformations that changes sets and functions continuously into their $(k,n)$-Steiner symmetrizations. Our construction consists of two stages. First, we employ a continuous symmetrization introduced by the author in 1990 to transform sets and functions into their one-dimensional Steiner symmetrization. Some of our proofs at this stage rely on a simple rearrangement called polarization. At the second stage, we use an approximation theorem due to Blaschke and Sarvas to give an inductive definition of the continuous $(k,n)$-Steiner symmetrization for any $2\le k\le n$. This transformation provides us with the desired continuous path along which all basic characteristics of sets and functions vary monotonically. In its turn, this leads to continuous versions of several convolution type inequalities and Dirichlet's type inequalities as well as to continuous versions of comparison theorems for solutions of some elliptic and parabolic partial differential equations.
Ключевые слова:
continuous symmetrization, Steiner symmetrization, rearrangement, polarization, integral inequality, boundary-value problem, comparison theorem.
Поступила в редакцию: 07.02.2011
Образец цитирования:
A. Yu. Solynin, “Continuous symmetrization via polarization”, Алгебра и анализ, 24:1 (2012), 157–222; St. Petersburg Math. J., 24:1 (2013), 117–166
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1272 https://www.mathnet.ru/rus/aa/v24/i1/p157
|
Статистика просмотров: |
Страница аннотации: | 470 | PDF полного текста: | 168 | Список литературы: | 63 | Первая страница: | 11 |
|