|
Эта публикация цитируется в 33 научных статьях (всего в 33 статьях)
Статьи
On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains
Hongjie Donga, N. V. Krylovb, Xu Lib a Division of Applied Mathematics, Brown University, Providence, RI, USA
b University of Minnesota, Minneapolis, MN, USA
Аннотация:
The solvability in the Sobolev spaces $W^{1,2}_p$, $p>d+1$, of the terminal-boundary value problem is proved for a class of fully nonlinear parabolic equations, including parabolic Bellman's equations, in bounded cylindrical domains, in the case of VMO “coefficients”. The solvability in $W^2_p$, $p>d$, of the corresponding elliptic boundary-value problem is also obtained.
Ключевые слова:
vanishing mean oscillation, fully nonlinear elliptic and parabolic equations, Bellman's equations.
Поступила в редакцию: 12.12.2010
Образец цитирования:
Hongjie Dong, N. V. Krylov, Xu Li, “On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains”, Алгебра и анализ, 24:1 (2012), 53–94; St. Petersburg Math. J., 24:1 (2013), 39–69
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1269 https://www.mathnet.ru/rus/aa/v24/i1/p53
|
|