108 citations to https://www.mathnet.ru/rus/sm3354
  1. A. A. Panchishkin, “The Maass–Shimura differential operators and congruences between arithmetical Siegel modular forms”, Mosc. Math. J., 5:4 (2005), 883–918  mathnet  crossref  mathscinet  zmath
  2. Özlem Imamoglu, Winfried Kohnen, “Representations of integers as sums of an even number of squares”, Math. Ann, 333:4 (2005), 815  crossref  mathscinet  zmath
  3. Pierre Colmez, Algebra and Number Theory, 2005, 193  crossref
  4. Colmez P., “The P-Adic Birch and Swinnerton-Dyer Conjecture”, Asterisque, 2004, no. 294, 251–319  mathscinet  zmath  isi
  5. [Anonymous], “Non-Archimedean l-Functions and Arithmetical Siegel Modular Forms”, Non-Archimedean l-Functions and Arithmetical Siegel Modular Forms, 2nd Augmented Ed, Lecture Notes in Mathematics, 1471, Springer-Verlag Berlin, 2004, 13+  mathscinet  isi
  6. В. А. Быковский, “Образующие элементы аннулирующего идеала для модулярных символов”, Функц. анализ и его прил., 37:4 (2003), 27–38  mathnet  crossref  mathscinet  zmath; V. A. Bykovskii, “Generating Elements of the Annihilating Ideal for Modular Symbols”, Funct. Anal. Appl., 37:4 (2003), 263–272  crossref  isi  elib
  7. Panchishkin A., “Two Variable P-Adic l Functions Attached to Eigenfamilies of Positive Slope”, Invent. Math., 154:3 (2003), 551–615  crossref  mathscinet  zmath  isi
  8. Pollack R., “On the P-Adic l-Function of a Modular Form at a Supersingular Prime”, Duke Math. J., 118:3 (2003), 523–558  crossref  mathscinet  zmath  isi
  9. A. A. Panchishkin, “A new method of constructing $p$-adic $L$-functions associated with modular forms”, Mosc. Math. J., 2:2 (2002), 313–328  mathnet  crossref  mathscinet  zmath  elib
  10. Shigeru Kanemitsu, Yoshio Tanigawa, Masami Yoshimoto, Developments in Mathematics, 8, Number Theoretic Methods, 2002, 159  crossref
Предыдущая
1
3
4
5
6
7
8
9
11
Следующая