27 citations to https://www.mathnet.ru/rus/im1148
  1. Nikolay Bogachev, Sami Douba, Jean Raimbault, “Infinitely many commensurability classes of compact Coxeter polyhedra in H4 and H5”, Advances in Mathematics, 448 (2024), 109705  crossref
  2. NIKOLAY BOGACHEV, “FROM GEOMETRY TO ARITHMETIC OF COMPACT HYPERBOLIC COXETER POLYTOPES”, Transformation Groups, 28:1 (2023), 77  crossref
  3. David Fisher, Sebastian Hurtado, “A new proof of finiteness of maximal arithmetic reflection groups”, Annales Henri Lebesgue, 6 (2023), 151  crossref
  4. Benson B.A., Lakeland G.S., Then H., “Cheeger Constants of Hyperbolic Reflection Groups and Maass Cusp Forms of Small Eigenvalues”, Proc. Amer. Math. Soc., 149:1 (2021), 417–438  crossref  mathscinet  isi
  5. Bogachev N. Kolpakov A., “On Faces of Quasi-Arithmetic Coxeter Polytopes”, Int. Math. Res. Notices, 2021:4 (2021), 3078–3096  crossref  mathscinet  isi
  6. Н. В. Богачев, “Классификация $(1{,}2)$-рефлективных анизотропных гиперболических решеток ранга $4$”, Изв. РАН. Сер. матем., 83:1 (2019), 3–24  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. V. Bogachev, “Classification of (1,2)-reflective anisotropic hyperbolic lattices of rank 4”, Izv. Math., 83:1 (2019), 1–19  crossref  isi
  7. Kontorovich A., Nakamura K., “Geometry and Arithmetic of Crystallographic Sphere Packings”, Proc. Natl. Acad. Sci. U. S. A., 116:2 (2019), 436–441  crossref  mathscinet  isi  scopus
  8. Bogachev N.V., “Classification of Stably Reflective Hyperbolic Z[Root 2]-Lattices of Rank 4”, Dokl. Math., 99:3 (2019), 241–244  crossref  mathscinet  isi
  9. Mark A., “The Classification of Rank 3 Reflective Hyperbolic Lattices Over Z[Root 2]”, Math. Proc. Camb. Philos. Soc., 164:2 (2018), 221–257  crossref  mathscinet  zmath  isi  scopus
  10. Linowitz B., “Bounds For Arithmetic Hyperbolic Reflection Groups in Dimension 2”, Transform. Groups, 23:3 (2018), 743–753  crossref  mathscinet  isi  scopus
1
2
3
Следующая