27 citations to https://www.mathnet.ru/rus/im1148
  1. Maclachlan C., “Commensurability classes of discrete arithmetic hyperbolic groups”, Groups Geom. Dyn., 5:4 (2011), 767–785  crossref  mathscinet  zmath  isi  scopus
  2. Mcleod J., “Hyperbolic reflection groups associated to the quadratic forms $-3x^2_0+x^2_1+\dots+x^2_n$”, Geom. Dedicata, 152:1 (2011), 1–16  crossref  mathscinet  zmath  isi  scopus
  3. Nikulin V.V., “On ground fields of arithmetic hyperbolic reflection groups. III”, J. Lond. Math. Soc. (2), 79:3 (2009), 738–756  crossref  mathscinet  zmath  isi  scopus
  4. Nikulin V.V., “On ground fields of arithmetic hyperbolic reflection groups”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 299–326  crossref  mathscinet  zmath  isi
  5. Agol I., Belolipetsky M., Storm P., Whyte K., “Finiteness of arithmetic hyperbolic reflection groups”, Groups Geom. Dyn., 2:4 (2008), 481–498  crossref  mathscinet  zmath  isi
  6. V. V. Nikulin, “On Ground Fields of Arithmetic Hyperbolic Reflection Groups. II”, Mosc. Math. J., 8:4 (2008), 789–812  mathnet  crossref  mathscinet  zmath
  7. В. В. Никулин, “Конечность числа арифметических групп, порожденных отражениями, в пространствах Лобачевского”, Изв. РАН. Сер. матем., 71:1 (2007), 55–60  mathnet  crossref  isi  scopus; V. V. Nikulin, “Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces”, Izv. Math., 71:1 (2007), 53–56  mathnet  crossref
Предыдущая
1
2
3