80 citations to https://www.mathnet.ru/rus/cmfd131
-
Pardeep Kumar, Kush Kinra, Manil T Mohan, “A local in time existence and uniqueness result of an inverse problem for the Kelvin-Voigt fluids”, Inverse Problems, 37:8 (2021), 085005
-
Allaberen Ashyralyev, Victor Zvyagin, Mikhail Turbin, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2325, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 020026
-
Victor Zvyagin, Mikhail Turbin, “Optimal feedback control problem for inhomogeneous Voigt fluid motion model”, J. Fixed Point Theory Appl., 23:1 (2021)
-
S. Antontsev, H.B. de Oliveira, Kh. Khompysh, “Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior”, ASY, 121:2 (2021), 125
-
S N Antontsev, Kh Khompysh, “An inverse problem for generalized Kelvin–Voigt equation with p-Laplacian and damping term”, Inverse Problems, 37:8 (2021), 085012
-
Ibrahim Zaaroura, Hilal Reda, Fabrice Lefebvre, Julien Carlier, Malika Toubal, Souad Harmand, Bertrand Nongaillard, Hassan Lakiss, “Modeling and Prediction of the Dynamic Viscosity of Nanofluids by a Homogenization Method”, Braz J Phys, 51:4 (2021), 1136
-
S N Antontsev, H B de Oliveira, Kh Khompysh, “The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity”, Nonlinearity, 34:5 (2021), 3083
-
Marina V. Plekhanova, Guzel D. Baybulatova, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 203
-
S N Antontsev, H B de Oliveira, Kh Khompysh, “Regularity and uniqueness of Kelvin-Voigt models for nonhomogeneous and incompressible fluids”, J. Phys.: Conf. Ser., 1666:1 (2020), 012003
-
N P Moshkin, “On Hiemenz flow of Maxwell incompressible viscoelastic medium”, J. Phys.: Conf. Ser., 1268:1 (2019), 012049