80 citations to https://www.mathnet.ru/rus/cmfd131
  1. S. N. Antontsev, Kh. Khompysh, “Inverse problems for a Boussinesq system for incompressible viscoelastic fluids”, Math Methods in App Sciences, 46:9 (2023), 11130  crossref
  2. Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25:3 (2023)  crossref
  3. Vladimir E. Fedorov, Mikhail M. Turov, “Multi-term equations with Riemann–Liouville derivatives and Hölder type function spaces”, Bol. Soc. Mat. Mex., 29:2 (2023)  crossref
  4. А. В. Чернов, “О существовании оптимального управления в задаче оптимизации младшего коэффициента полулинейного эволюционного уравнения”, Ж. вычисл. матем. и матем. физ., 63:7 (2023), 1084–1099  mathnet  crossref; A. V. Chernov, “On the existence of optimal control in the problem of optimizing the lowest coefficient of a semilinear evolutionary equation”, Comput. Math. Math. Phys., 63:7 (2023), 1176–1190  mathnet  crossref
  5. Khonatbek Khompysh, Aidos Ganizhanuly Shakir, “An inverse source problem for a nonlinear pseudoparabolic equation with p-Laplacian diffusion and damping term”, Quaestiones Mathematicae, 46:9 (2023), 1889  crossref
  6. Kh. Khompysh, A. G. Shakir, “Inverse Problems for Kelvin–Voigt System with Memory: Global Existence and Uniqueness”, Lobachevskii J Math, 44:10 (2023), 4348  crossref
  7. Andrey Zvyagin, Ekaterina Kostenko, “Investigation of the Weak Solvability of One Viscoelastic Fractional Voigt Model”, Mathematics, 11:21 (2023), 4472  crossref
  8. Manil T. Mohan, “Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with “fading memory””, EECT, 11:1 (2022), 125  crossref
  9. S. N. Antontsev, H. B. de Oliveira, Kh. Khompysh, “Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping”, Nonlinear Differ. Equ. Appl., 29:5 (2022)  crossref
  10. S. N. Antontsev, H. B. de Oliveira, “Cauchy problem for the Navier–Stokes–Voigt model governing nonhomogeneous flows”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116:4 (2022)  crossref
Предыдущая
1
2
3
4
5
6
7
8
Следующая