80 citations to https://www.mathnet.ru/rus/cmfd131
-
Y. Vinod, K. R. Raghunatha, Bassem F. Felemban, Ayman A. Aly, Mustafa Inc, Shahram Rezapour, Suma Nagendrappa Nagappanavar, Sangamesh, “Exploring double diffusive oscillatory flow in a Voigt fluid”, Mod. Phys. Lett. B, 2024
-
А. С. Шамаев, В. В. Шумилова, “Усреднение уравнений движения среды, состоящей из упругого материала и несжимаемой жидкости Кельвина-Фойгта”, Уфимск. матем. журн., 16:1 (2024), 99–110 ; A. S. Shamaev, V. V. Shumilova, “Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid”, Ufa Math. J., 16:1 (2024), 100–111
-
Kh. Khompysh, “Determination of a time dependent source in semilinear pseudoparabolic equations with Caputo fractional derivative”, Chaos, Solitons & Fractals, 189 (2024), 115716
-
В. Г. Звягин, М. В. Турбин, “Разрешимость начально-краевой задачи для модели движения жидкости Кельвина–Фойгта с переменной плотностью”, Докл. РАН. Матем., информ., проц. упр., 509 (2023), 13–16 ; V. G. Zvyagin, M. V. Turbin, “Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density”, Dokl. Math., 107:1 (2023), 9–11
-
В. Г. Звягин, М. В. Турбин, “Теорема существования слабых решений начально-краевой задачи
для неоднородной несжимаемой модели Кельвина–Фойгта без ограничения
снизу на начальное значение плотности”, Матем. заметки, 114:4 (2023), 628–632 ; V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math. Notes, 114:4 (2023), 630–634
-
A. S. Shamaev, V. V. Shumilova, “Homogenization of Equations of Dynamics of a Medium Consisting of Viscoelastic Material with Memory and Incompressible Kelvin–Voigt Fluid”, J Math Sci, 270:6 (2023), 827
-
Khonatbek Khompysh, Nursaule K. Nugymanova, “Inverse problem for integro-differential Kelvin–Voigt equations”, Journal of Inverse and Ill-posed Problems, 31:6 (2023), 835
-
Stanislav Antontsev, Ivan Kuznetsov, Sergey Shmarev, “Global existence and regularity for a pseudo-parabolic equation with p(x,t)-Laplacian”, Journal of Mathematical Analysis and Applications, 526:1 (2023), 127202
-
Kh. Khompysh, A.G. Shakir, A.A. Kabidoldanova, “Inverse problems for nonlinear Navier–Stokes–Voigt system with memory”, Chaos, Solitons & Fractals, 177 (2023), 114182
-
Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29:2 (2023)