- Kimio Ueno, Kanehisa Takasaki, “Toda lattice Hierarchy, I”, Proc. Japan Acad. Ser. A Math. Sci., 59, no. 5, 1983
- R S Farwell, M Minami, “Local conservation laws for the two-dimensional periodic SU(n+1) Toda lattices”, J. Phys. A: Math. Gen., 15, no. 11, 1982, 3405
- Askold M. Perelomov, “Remarks on the mass spectrum of two-dimensional Toda lattice of E8 type”, JNMP, 27, no. 1, 2019, 12
- A. Fring, D.I. Olive, “The fusing rule and the scattering matrix of affine Toda theory”, Nuclear Physics B, 379, no. 1-2, 1992, 429
- Zene Horii, “Toda lattice mass transport in Lagrangian mechanics and in a two-dimensional system”, Physica A: Statistical Mechanics and its Applications, 361, no. 2, 2006, 511
- Vincent Caudrelier, Nicolas Crampé, “Classical N-reflection equation and Gaudin models”, Lett Math Phys, 109, no. 4, 2019, 843
- C. Acerbi, “Form factors of exponential operators and exact wave function renormalization constant in the Bullough-Dodd model”, Nuclear Physics B, 497, no. 3, 1997, 589
- G.W. Delius, M.T. Grisaru, D. Zanon, “Quantum conserved currents in affine Toda theories”, Nuclear Physics B, 385, no. 1-2, 1992, 307
- Boris Feigin, Edward Frenkel, “Kac-Moody groups and integrability of soliton equations”, Invent Math, 120, no. 1, 1995, 379
- Ismagil Habibullin, Natalya Zheltukhina, Alfia Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, Journal of Mathematical Physics, 52, no. 9, 2011, 093507