- I. V. Barashenkov, B. S. Getmanov, V. E. Kovtun, “The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. I”, Journal of Mathematical Physics, 34, no. 7, 1993, 3039
- F. Guil Guerrero, “Specializations of integrable systems and affine Lie algebras”, Journal of Mathematical Physics, 25, no. 3, 1984, 445
- Amílcar Branquinho, Ana Foulquié-Moreno, Teresa E. Pérez, Miguel A. Piñar, “Lax-type pairs in the theory of bivariate orthogonal polynomials”, Linear Algebra and its Applications, 2024
- H W Braden, “A note on affine Toda couplings”, J. Phys. A: Math. Gen., 25, no. 1, 1992, L15
- Владимир Андреевич Андреев, Vladimir Andreevich Andreev, “Система уравнений для вынужденного комбинационного рассеяния и связанные с ней двойные периодические $A_n^{(1)}$-цепочки Тоды”, ТМФ, 156, no. 1, 2008, 67
- A. R. Chowdhury, S. Sen, “On the Prolongation Structure Approach to the Relativistic String in Curved Space-Time”, Progress of Theoretical Physics, 76, no. 5, 1986, 973
- V S Gerdjikov, E G Evstatiev, R I Ivanov, “The complex Toda chains and the simple Lie algebras - solutions and large time asymptotics”, J. Phys. A: Math. Gen., 31, no. 40, 1998, 8221
- I. McIntosh, E 23, Harmonic Maps and Integrable Systems, 1994, 205
- Olalla Castro-Alvaredo, Andreas Fring, “Chaos in the thermodynamic Bethe ansatz”, Physics Letters A, 334, no. 2-3, 2005, 173
- Marco A.C. Kneipp, David I. Olive, “Crossing and antisolitons in affine Toda theories”, Nuclear Physics B, 408, no. 3, 1993, 565