- Petr P. Kulish, Anton M. Zeitlin, “Quantum supersymmetric Toda–mKdV hierarchies”, Nuclear Physics B, 720, no. 3, 2005, 289
- KH. S. NIROV, A. V. RAZUMOV, “ABELIAN TODA SOLITONS REVISITED”, Rev. Math. Phys., 20, no. 10, 2008, 1209
- David Baraglia, “Cyclic Higgs bundles and the affine Toda equations”, Geom Dedicata, 174, no. 1, 2015, 25
- V. S. Gerdjikov, G. G. Grahovski, A. A. Stefanov, “Real Hamiltonian forms of affine Toda field theories: Spectral aspects”, Theor Math Phys, 212, no. 2, 2022, 1053
- F.W. Nijhoff, H.W. Capel, G.L. Wiersma, 239, Geometric Aspects of the Einstein Equations and Integrable Systems, 1985, 263
- A. Doliwa, A. Sym, “Non-linear σ-models on spheres and Toda systems”, Physics Letters A, 185, no. 5-6, 1994, 453
- Spenta R. Wadia, Sumit R. Das, “Topology of quantum gauge fields and duality (I): Yang-Mills-Higgs system in 2 + 1 dimensions”, Physics Letters B, 106, no. 5, 1981, 386
- B. A. Dubrovin, T. V. Skrypnyk, “Classical double, R-operators, and negative flows of integrable hierarchies”, Theor Math Phys, 172, no. 1, 2012, 911
- A.G. Bytsko, A. Fring, “ADE spectra in conformal field theory”, Physics Letters B, 454, no. 1-2, 1999, 59
- Patrick Dorey, Davide Polvara, “Tree level integrability in 2d quantum field theories and affine Toda models”, J. High Energ. Phys., 2022, no. 2, 2022, 199