- Marie-Claude Arnaud, “C 1-generic billiard tables have a dense set of periodic points”, Regul. Chaot. Dyn., 18, no. 6, 2013, 697
- B. M. Miller, E. Ya. Rubinovich, J. Bentsman, “Singular Space-Time Transformations. Towards One Method For Solving the Painlevé Problem”, J Math Sci, 219, no. 2, 2016, 208
- Sergey V. Bolotin, “Degenerate billiards in celestial mechanics”, Regul. Chaot. Dyn., 22, no. 1, 2017, 27
- M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295, no. 1, 2016, 27
- Impact Mechanics, 2018, 225
- Q. Feng, “Discrete Models of a Class of Isolation Systems”, Arch Appl Mech, 76, no. 5-6, 2006, 277
- B. M. Miller, “Controllable Systems with Impacts”, J Math Sci, 199, no. 5, 2014, 571
- L. S. Otradnova, “Maximum of action for Hamiltonian systems with unilateral constraints”, Moscow Univ. Mech. Bull., 67, no. 4, 2012, 103
- Oded Badt, Yaron Ostrover, “The existence of a billiard orbit in the regular hyperbolic simplex”, J. Topol. Anal., 06, no. 01, 2014, 107
- Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “On the model of non-holonomic billiard”, Regul. Chaot. Dyn., 16, no. 6, 2011, 653