- V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209, no. 12, 2018, 1690
- A. K. Tripathy, G. N. Chhatria, “Oscillation of Second Order Nonlinear Impulsive Neutral Differential Equations”, Int. J. Appl. Comput. Math, 5, no. 3, 2019, 86
- I V Sypchenko, D S Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206, no. 5, 2015, 738
- Jesús G. Riestra, Julio C. Gutiérrez-Vega, “Quantum states resembling classical periodic trajectories in mesoscopic elliptic billiards”, Phys. Rev. E, 109, no. 3, 2024, 034205
- V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83, no. 6, 2019, 1137
- D. Pekarek, T. D. Murphey, 2012 American Control Conference (ACC), 2012, 1040
- I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211, no. 7, 2020, 987
- V. V. Kozlov, “Spectral properties of operators with polynomial invariants in real finite-dimensional spaces”, Proc. Steklov Inst. Math., 268, no. 1, 2010, 148
- M.V. Deryabin, V.V. Kozlov, “A theory of systems with unilateral constraints”, Journal of Applied Mathematics and Mechanics, 59, no. 4, 1995, 505
- S. Galeani, L. Menini, A. Potini, A. Tornambè, “Trajectory tracking for a particle in elliptical billiards”, International Journal of Control, 81, no. 2, 2008, 189