- Vladimir Dragović, Roger Fidèle Ranomenjanahary, “Division of $n$-Dimensional Euclidean Space into Circumscribed $n$-Cuboids”, Proc. Steklov Inst. Math., 310, no. 1, 2020, 137
- Pablo I. Hurtado, S. Redner, “Simplest piston problem. I. Elastic collisions”, Phys. Rev. E, 73, no. 1, 2006, 016136
- R. I. Leine, U. Aeberhard, C. Glocker, “Hamilton’s Principle as Variational Inequality for Mechanical Systems with Impact”, J Nonlinear Sci, 19, no. 6, 2009, 633
- V. V. Vedyushkina, A. T. Fomenko, “Reducing the Degree of Integrals of Hamiltonian Systems by Using Billiards”, Dokl. Math., 99, no. 3, 2019, 266
- Impact Mechanics, 2018, 177
- P.R. Pagilla, Biao Yu, “A stable transition controller for constrained robots”, IEEE/ASME Trans. Mechatron., 6, no. 1, 2001, 65
- V. V. Vedyushkina, A. T. Fomenko, “Force Evolutionary Billiards and Billiard Equivalence of the Euler and Lagrange Cases”, Dokl. Math., 103, no. 1, 2021, 1
- Keith Promislow, Qiliang Wu, “Existence, bifurcation, and geometric evolution of quasi-bilayers in the multicomponent functionalized Cahn–Hilliard equation”, J. Math. Biol., 75, no. 2, 2017, 443
- V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Sb. Math., 212, no. 8, 2021, 1122
- V. V. Vedyushkina, “The Fomenko-Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210, no. 3, 2019, 310