- Stelios A. Charalambides, Pantelis A. Damianou, “Toda systems”, Physica D: Nonlinear Phenomena, 248, 2013, 33
- K. V. Emel’yanov, “On the classification problem for Birkhoff integrable systems with potentials of exponential type”, Math Notes, 67, no. 5, 2000, 672
- O. I. Bogoyavlensky, “Five constructions of integrable dynamical systems connected with the Korteweg-de Vries equation”, Acta Appl Math, 13, no. 3, 1988, 227
- M. Golenishcheva-Kutuzova, D. Lebedev, “Vertex operator representation of some quantum tori Lie algebras”, Commun.Math. Phys., 148, no. 2, 1992, 403
- Hervé Bergeron, Ewa Czuchry, Jean-Pierre Gazeau, Przemysław Małkiewicz, “Integrable Toda system as a quantum approximation to the anisotropy of the mixmaster universe”, Phys. Rev. D, 98, no. 8, 2018, 083512
- M. A. Olshanetsky, “Supersymmetric two-dimensional Toda lattice”, Commun.Math. Phys., 88, no. 1, 1983, 63
- Luis Casian, Yuji Kodama, “Toda lattice, cohomology of compact Lie groups and finite Chevalley groups”, Invent. math., 165, no. 1, 2006, 163
- Franz G. MERTENS, Helmut BÜTTNER, 17, Solitons, 1986, 723
- Z Popowicz, “N=2 supersymmetry Toda lattice”, J. Phys. A: Math. Gen., 19, no. 8, 1986, 1495
- Vladimir D. Ivashchuk, “Multidimensional cosmology and Toda-like systems”, Physics Letters A, 170, no. 1, 1992, 16