Potential Theory, Theory of Analytic and Subharmonic Functions, Approximation Theory.
Main publications:
A uniqueness theorem for meromorphic functions. - Izv. Akad. Nauk Armjan. SSR.
Ser. Mat. 15 (1980), no. 2, 110–126.
On the radii of exceptional disks in lower estimates of the modulus of functions of
bounded type. - Uspekhi Mat. Nauk 36 (1981), no. 6(222), 233–234.
Decrease on a sequence of points of a function holomorphic on a half plane. - Sibirsk. Mat. Zh. 24 (1983), no. 2, 180–192.
The estimations outside exceptional sets and uniqueness theorems for $\delta$-subharmonic functions. Thesis. Moscow, 1983, 130 p.
On the algorithm of Diliberto and Straus for approximating bivariate functions by sums $g(x)+h(y)$. - Sibirsk. Mat. Zh. 28 (1987), no. 5, 223–224. The complete version is deposited at VINITI, no. 2505-B, 1986, 16 p.
Exceptional sets in asymptotic estimates of subharmonic functions. - Sibirsk. Mat. Zh. 29 (1988), no. 6, 185–196.
Measure and capacity of exceptional sets arising in estimations of $\delta$-subharmonic functions. - Potential Theory. Proc. Intern. Conf. on Potential Theory, Nagoya, 1990.
Ed. M. Kishi et al. Walter de Gruyter Publ., 1992, 171–177.
On the comparison of Hausdorff measure and capacity. - Algebra i Analis 3 (1991), no. 6, 174–189. = St. Petersburg Math. J. 3 (1992), no. 6, 1367–1381.
On a sum of values on the sequence of points for functions from some classes. - Izvestiya Vuzov. Mat. 1992, no. 1, 89–97.
Metric characteristics of exceptional sets arising in estimations of subharmonic functions. - Mat. Sbornik 185 (1994), no. 10, 145–160.
(with M. Essen) On exceptional sets for superharmonic functions in a halfspace: an inverse problem. - Math. Scandinavica 76 (1995), 273–288.
On a conjecture of L. D. Ivanov. - In: Linear and Complex Analysis Problem Book 3, Vol. 2. Lect. Notes in Math. 1574. Springer, 1994, 152–153.
On an approximation by polynomials with small coefficients. - Mat. Zametki (Math. Notes) 57 (1995), no. 1, 150–153.
(with M. Essén) Harmonic majorization of $|x_1|$ in subsets of $\mathbf R^n$, $n\ge 2$ - Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 223–240.
Estimates of potentials and $\delta$-subharmonic functions outside exceptional sets. - Izv. Ross. Akad. Nauk, Matem. 61 (1997), no. 6, 181–218.
Hausdorff measure and capacity associated with the Cauchy potentials. - Math. Zametki (Math. Notes) 63 (1998), no. 6, 923–934.
Metric properties of exceptional sets. - Complex Analysis and Differential Equations. Proceedings of the Marcus Wallenberg Symposium in Honor of Matts Essen Held in Uppsala, Sweden, June 15–18, 1997. Uppsala: Uppsala Univ., 1999.
Metric characteristics of exceptional sets and uniqueness theorems in function theory. Doctorate thesis. Moscow, 1999, 192 p.
(with M. Essén) Uniqueness theorems for analytic and subharmonic functions. - Algebra i Analiz 14 (2002), no. 6, 1–88. = St. Petersburg Math. J. 14 (2003), no. 6, 889–952.
(with P. Thomas) Equivalence of summatory conditions along sequences for bounded holomorphic functions. - Complex Var. Theory Appl. 49 (2004), no. 7–9, 595–611.
Capacities of generalized Cantor sets. - In: Selected Topics in Complex Analysis. The S. Ya. Khavinson Memorial Volume. Operator Theory: Adv. And Appl., Vol. 158. Birkhauser, 2005, pp. 131–139.
(with J. M. Anderson) Estimates for the Cauchy transform of point masses (the logarithmic derivative of polynomials). - Dokl. Akad. Nauk, 401 (2005), no. 5, 583–586. = Doklady Mathematics, 71 (2005), no. 2, 241–244.
(with J. M. Anderson) Cauchy transforms of point masses: the logarithmic derivative of polynomials. - Ann. Math. 163 (2006), 1057–1076.
A. L. Volberg, V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Uspekhi Mat. Nauk, 68:6(414) (2013), 3–58; Russian Math. Surveys, 68:6 (2013), 973–1026
V. Ya. Èiderman, “Cartan-type estimates for potentials with Cauchy
kernels and real-valued kernels”, Mat. Sb., 198:8 (2007), 115–160; Sb. Math., 198:8 (2007), 1175–1220
V. Ya. Èiderman, E. Matts, “Uniqueness theorems for analytic and subharmonic functions”, Algebra i Analiz, 14:6 (2002), 1–88; St. Petersburg Math. J., 14:6 (2003), 889–952
V. Ya. Èiderman, “Approximation by polynomials with small coefficients”, Mat. Zametki, 57:1 (1995), 150–153; Math. Notes, 57:1 (1995), 110–112
1994
7.
V. Ya. Èiderman, “Metric characteristics of exceptional sets arising in estimates of subharmonic functions”, Mat. Sb., 185:10 (1994), 145–160; Russian Acad. Sci. Sb. Math., 83:1 (1995), 283–296
V. Ya. Èiderman, “On the sum of values of functions in certain classes on a sequence of points”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1, 89–97; Russian Math. (Iz. VUZ), 36:1 (1992), 87–95
V. Ya. Èiderman, “On a comparison between the Hausdorff measure and capacity”, Algebra i Analiz, 3:6 (1991), 173–188; St. Petersburg Math. J., 3:6 (1992), 1367–1381
V. Ya. Èiderman, “An exceptional set in asymptotic estimates of subharmonic functions”, Sibirsk. Mat. Zh., 29:6 (1988), 185–196; Siberian Math. J., 29:6 (1988), 1019–1027
V. Ya. Èiderman, “Decrease of a function analytic in the half plane over a sequence of points”, Sibirsk. Mat. Zh., 24:2 (1983), 180–192; Siberian Math. J., 24:2 (1983), 304–315
1981
12.
V. Ya. Èiderman, “On the radii of exceptional discs in lower estimates of the modulus of functions of bounded type”, Uspekhi Mat. Nauk, 36:6(222) (1981), 233–234; Russian Math. Surveys, 36:6 (1981), 175–176
2004
13.
A. G. Vitushkin, A. A. Gonchar, M. V. Samokhin, V. M. Tikhomirov, P. L. Ul'yanov, V. P. Havin, V. Ya. Èiderman, “Semën Yakovlevich Khavinson (obituary)”, Uspekhi Mat. Nauk, 59:4(358) (2004), 186–192; Russian Math. Surveys, 59:4 (2004), 777–785