Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 6, Pages 1293–1329
DOI: https://doi.org/10.1070/im1997v061n06ABEH000166
(Mi im166)
 

This article is cited in 9 scientific papers (total in 9 papers)

Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets

V. Ya. Èiderman

Moscow State University of Civil Engineering
References:
Abstract: It is shown that the estimates for potentials obtained by Landkof are, in a sense, unimprovable. To prove this, we establish exact estimates for the Hausdorff measure and the capacity of Cantor sets in $\mathbb R^m$, $m\geqslant 1$, and estimates for potentials on these sets. These results are used in other sections of this article. Frostman's theorem on the comparison of the Hausdorff measure with the capacity is supplemented with inequalities that connect the capacity and the $h$-girth in the sense of Hausdorff. We find an exact condition on measuring functions under which convergence of the integral $\int_0K(t)\,dh(t)$ is necessary for the validity of Frostman's theorem (here $h$ is the measuring function and $K$ is the kernel of the potential). The theorem of Govorov on the estimation of a subharmonic function in a disc (which, in turn, extends the Valiron–Bernstein theorem on the lower estimation of the modulus of a holomorphic function) is generalized to $\delta$-subharmonic functions of bounded form in a ball in $\mathbb R^m$, $m\geqslant 2$. In connection with this, we consider a more general problem rather than the problem of estimating the sum of the radii of exceptional balls. We study the exactness of the results obtained.
Received: 04.12.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1997, Volume 61, Issue 6, Pages 181–218
DOI: https://doi.org/10.4213/im166
Bibliographic databases:
MSC: 31B05
Language: English
Original paper language: Russian
Citation: V. Ya. Èiderman, “Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets”, Izv. RAN. Ser. Mat., 61:6 (1997), 181–218; Izv. Math., 61:6 (1997), 1293–1329
Citation in format AMSBIB
\Bibitem{Eid97}
\by V.~Ya.~\`Eiderman
\paper Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets
\jour Izv. RAN. Ser. Mat.
\yr 1997
\vol 61
\issue 6
\pages 181--218
\mathnet{http://mi.mathnet.ru/im166}
\crossref{https://doi.org/10.4213/im166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1609199}
\zmath{https://zbmath.org/?q=an:0904.31003}
\elib{https://elibrary.ru/item.asp?id=13272638}
\transl
\jour Izv. Math.
\yr 1997
\vol 61
\issue 6
\pages 1293--1329
\crossref{https://doi.org/10.1070/im1997v061n06ABEH000166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074095400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748089371}
Linking options:
  • https://www.mathnet.ru/eng/im166
  • https://doi.org/10.1070/im1997v061n06ABEH000166
  • https://www.mathnet.ru/eng/im/v61/i6/p181
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:534
    Russian version PDF:238
    English version PDF:20
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024