Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 6, Pages 923–934
DOI: https://doi.org/10.4213/mzm1363
(Mi mzm1363)
 

This article is cited in 14 scientific papers (total in 14 papers)

Hausdorff measure and capacity associated with Cauchy potentials

V. Ya. Èiderman

Moscow State University of Civil Engineering
References:
Abstract: In the paper the connection between the Hausdorff measure $\Lambda_h(E)$ of sets $E\subset\mathbb C$ and the analytic capacity $\gamma(E)$, and also between $\Lambda_h(E)$ and the capacity $\gamma^+(E)$ generated by Cauchy potentials with nonnegative measures is studied. It is shown that if the integral $\int_0t^{-3}h^2(t)dt$ is divergent and $h$ satisfies the regularity condition, then there exists a plane Cantor set $E$ for which $\Lambda_h(E)>0$, but $\gamma^+(E)=0$. The proof is based on the estimate of $\gamma^+(E_n)$, where $E_n$ is the set appearing at the $n$th step in the construction of a plane Cantor set.
Received: 20.12.1996
English version:
Mathematical Notes, 1998, Volume 63, Issue 6, Pages 813–822
DOI: https://doi.org/10.1007/BF02312776
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. Ya. Èiderman, “Hausdorff measure and capacity associated with Cauchy potentials”, Mat. Zametki, 63:6 (1998), 923–934; Math. Notes, 63:6 (1998), 813–822
Citation in format AMSBIB
\Bibitem{Eid98}
\by V.~Ya.~\`Eiderman
\paper Hausdorff measure and capacity associated with Cauchy potentials
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 923--934
\mathnet{http://mi.mathnet.ru/mzm1363}
\crossref{https://doi.org/10.4213/mzm1363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679225}
\zmath{https://zbmath.org/?q=an:0919.28004}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 813--822
\crossref{https://doi.org/10.1007/BF02312776}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076726600035}
Linking options:
  • https://www.mathnet.ru/eng/mzm1363
  • https://doi.org/10.4213/mzm1363
  • https://www.mathnet.ru/eng/mzm/v63/i6/p923
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :233
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024