Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Savchenko, Sergey Valerievich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17
Presentations: 1

Number of views:
This page:6161
Abstract pages:15310
Full texts:3717
References:1104
Candidate of physico-mathematical sciences (1996)
Speciality: 01.01.05 (Probability theory and mathematical statistics)
Birth date: 02.03.1968
E-mail: ,
Website: https://www.itp.ac.ru
Keywords: dynamical systems; symbolic dynamics; topological Markov chains; Ruelle-Perron-Frobenius operators; spectral theory of nonnegative matrices; directed graphs.

Subject:

Abramov's formula for the entropy of the special flow constructed from a dynamical system $(T,X,\mu)$ and a nonnegative function $f$ on the space $X$ is generalized to the case when the measure $\mu$ is infinite ($\mu(X)=\infty$) and the integral of $f$ with respect to $\mu$ is finite $(\limits\int_{X}fd\mu < \infty)$. In this generalized Abramov formula the Kringel entropy is taken as the metric entropy of $\mu$ with respect to $T.$ For finite topological Markov chains, the Parry conjecture is proved. It states that any Holder function all of whose integrals with respect to invariant probability measures are nonnegative is cohomologous to a nonnegative Holder function. It is shown that under adding a new row and a new column to a matrix the typical change of the spectral properties for each of its eigenvalues is the following: one largest Jordan block disappears and all the others remain the same. It is proved that this typical change of the spectral properties takes place for the Perron eigenvalue of any principal submatrix of co-order one of an irreducible nonnegative matrix. The same result holds under a typical rank one perturbation. For a typical perturbation of rank $r,$ the spectral properties of a fixed eigenvalue are changed in the following way: $r$ largest Jordan blocks disappear and the others are reserved in the Jordan form of the perturbed matrix. A criterion for a strongly connected subdigraph $S$ to be maximal in the original strongly connected digraph $D$ is obtained (by definition, $S$ is maximal if and only if any strongly connected subdigraph that contains $S$ is either $S$ or $D$). It is shown that any two maximal strongly connected subdigraphs have no common vertices if and only if the diameter of $D$ is one less that its order $n$, the digraph $D$ has a (unique) Hamiltonian circuit and there are at least two pairs of vertices such that the distance between them is equal to $n-1.$ These results are used for studying the connectivity properties and the spectral properties of vertex-deleted subdigraphs with the biggest Perron eigenvalue.

Biography

Graduated from Faculty of Mathematics and Mechanics of M.V. Lomonosov Moscow State University (MSU) in 1992 (department of mathematical statistics and random processes). Ph.D. thesis was defended in 1996. A list of my works contains more than 15 titles.

Member of Moscow Mathematical Society.

   
Main publications:
  • Savchenko S. V. Periodicheskie tochki schetnykh topologicheskikh markovskikh tsepei // Matem. sbornik, 1995, 186 (10), 103–140.
  • Savchenko S. V. Spetsialnye potoki, postroennye po schetnym TMTs // Funk. anal. i ego pril., 1998, 32 (1), 40–53.
  • Gurevich B. M., Savchenko S. V. Termodinamicheskii formalizm dlya simvolicheskikh tsepei Markova so schetnym chislom sostoyanii // UMN, 1998, 53 (2), 3–106.
  • Savchenko S.V. Gomologicheskie neravenstva dlya konechnykh topologicheskikh tsepei Markova. Funk. anal. i ego pril., 1999, 33 (3), 91–93.
  • Savchenko S. V. O spektralnykh svoistvakh nerazlozhimoi neotritsatelnoi matritsy i ee glavnykh podmatrits koporyadka odin // UMN, 2000, 55 (1), 191–192.

https://www.mathnet.ru/eng/person8365
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/338869

Publications in Math-Net.Ru Citations
2006
1. S. V. Savchenko, “On the number of noncritical vertices in strongly connected digraphs”, Mat. Zametki, 79:5 (2006),  743–755  mathnet  mathscinet  zmath  elib; Math. Notes, 79:5 (2006), 687–696  isi  scopus 4
2005
2. S. V. Savchenko, “Laurent expansion for the determinant of the matrix of scalar resolvents”, Mat. Sb., 196:5 (2005),  121–144  mathnet  mathscinet  zmath  elib; Sb. Math., 196:5 (2005), 743–764  isi  elib  scopus 8
2004
3. S. V. Savchenko, “On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank”, Funktsional. Anal. i Prilozhen., 38:1 (2004),  85–88  mathnet  mathscinet  zmath; Funct. Anal. Appl., 38:1 (2004), 69–71  isi  scopus 42
2003
4. S. V. Savchenko, “Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator”, Mat. Zametki, 74:4 (2003),  590–602  mathnet  mathscinet  zmath  elib; Math. Notes, 74:4 (2003), 557–568  isi  scopus 36
2001
5. S. V. Savchenko, “Maximal suborgraphs with the biggest Perron number”, Uspekhi Mat. Nauk, 56:6(342) (2001),  165–166  mathnet  mathscinet  zmath; Russian Math. Surveys, 56:6 (2001), 1181–1182  isi  scopus
2000
6. S. V. Savchenko, “Spectral properties of an indecomposable non-negative matrix and its principal submatrices of co-order one”, Uspekhi Mat. Nauk, 55:1(331) (2000),  191–192  mathnet  mathscinet  zmath; Russian Math. Surveys, 55:1 (2000), 184–185  isi 4
1999
7. S. V. Savchenko, “On the spectra of connected graphs”, Diskr. Mat., 11:3 (1999),  29–47  mathnet  mathscinet  zmath; Discrete Math. Appl., 9:5 (1999), 503–522
8. S. V. Savchenko, “Cohomological Inequalities for Finite Topological Markov Chains”, Funktsional. Anal. i Prilozhen., 33:3 (1999),  91–93  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 33:3 (1999), 236–238  isi 27
1998
9. S. V. Savchenko, “Special Flows Constructed From Countable Topological Markov Chains”, Funktsional. Anal. i Prilozhen., 32:1 (1998),  40–53  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 32:1 (1998), 32–41  isi 25
10. S. V. Savchenko, “Stability of the upper bound of a spectrum under perturbations by diagonal matrices for a class of self-adjoint operators”, Uspekhi Mat. Nauk, 53:2(320) (1998),  163–164  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:2 (1998), 406–407  isi  scopus
11. B. M. Gurevich, S. V. Savchenko, “Thermodynamic formalism for countable symbolic Markov chains”, Uspekhi Mat. Nauk, 53:2(320) (1998),  3–106  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:2 (1998), 245–344  isi  scopus 63
12. S. V. Savchenko, “On the ground state of free and random discrete Hamiltonians perturbed by an operator of rank one for a critical value of the coupling constant”, TMF, 114:1 (1998),  94–103  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 114:1 (1998), 73–80  isi 1
13. S. V. Savchenko, “On the probability of the existenceof a localized basic state for a discrete Schrödinger equation with random potential, perturbed by a compact operator”, Teor. Veroyatnost. i Primenen., 43:1 (1998),  166–171  mathnet  mathscinet  zmath; Theory Probab. Appl., 43:1 (1999), 158–162  isi 1
1997
14. S. V. Savchenko, “On the spectra of finite submatrices of infinite irreducible matrices”, Uspekhi Mat. Nauk, 52:3(315) (1997),  175–176  mathnet  mathscinet  zmath; Russian Math. Surveys, 52:3 (1997), 619–620  isi  scopus 4
1996
15. S. V. Savchenko, “Equilibrium states with incomplete supports and periodic trajectories”, Mat. Zametki, 59:2 (1996),  230–253  mathnet  mathscinet  zmath; Math. Notes, 59:2 (1996), 163–179  isi 2
1995
16. S. V. Savchenko, “Periodic points of denumerable topological Markov chains”, Mat. Sb., 186:10 (1995),  103–140  mathnet  mathscinet  zmath; Sb. Math., 186:10 (1995), 1493–1529  isi 4
1993
17. S. V. Savchenko, “The zeta-function and Gibbs measures”, Uspekhi Mat. Nauk, 48:1(289) (1993),  181–182  mathnet  mathscinet  zmath; Russian Math. Surveys, 48:1 (1993), 189–190  isi 6

Presentations in Math-Net.Ru
1. Конечные приближения бесконечных неотрицательных матриц:термодинамический формализм
S. V. Savchenko
Sinai Seminar
September 10, 2013 14:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024