Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 5, Pages 743–764
DOI: https://doi.org/10.1070/SM2005v196n05ABEH000898
(Mi sm1360)
 

This article is cited in 8 scientific papers (total in 8 papers)

Laurent expansion for the determinant of the matrix of scalar resolvents

S. V. Savchenko

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: Let $A$ be an arbitrary square matrix, $\lambda$ an eigenvalue of it, $\{\xi_1,\dots,\xi_r\}$ and $\{\eta_1,\dots,\eta_r\}$ two systems of linearly independent vectors. A representation of the matrix of scalar resolvents, with $ij$th entry equal by definition to $(\xi_i,(zE-A)^{-1}\eta_j)$, in the form of the product of three matrices $\Xi$, $\Delta(z)$, and $\Psi^T$ is obtained, only one of which, $\Delta(z)$, depends on $z$ and is a rational function of $z$. On the basis of this factorization and the Binet–Cauchy formula a method for finding the principal part of the Laurent series at the point $z=\lambda$ for the determinant of the matrix of scalar resolvents is put forward and the first two coefficients of the series are found. In the case when at least one of them is distinct from zero, the change after the transition from $A$ to $A+B$ of the part of the Jordan normal form corresponding to $\lambda$ is determined, where $B=\sum_{i=1}^r(\,\cdot\,,\xi_i)\eta_i$ is the operator of rank $r$ associated with the systems of vectors $\{\xi_1,\dots,\xi_r\}$ and $\{\eta_1,\dots,\eta_r\}$; and the Jordan basis for the corresponding root subspace of $A+B$ is constructed from Jordan chains of $A$.
Received: 16.06.2004
Bibliographic databases:
UDC: 517.53+517.983
MSC: Primary 47A55, 15A21; Secondary 15A18
Language: English
Original paper language: Russian
Citation: S. V. Savchenko, “Laurent expansion for the determinant of the matrix of scalar resolvents”, Sb. Math., 196:5 (2005), 743–764
Citation in format AMSBIB
\Bibitem{Sav05}
\by S.~V.~Savchenko
\paper Laurent expansion for the determinant of the matrix of scalar resolvents
\jour Sb. Math.
\yr 2005
\vol 196
\issue 5
\pages 743--764
\mathnet{http://mi.mathnet.ru//eng/sm1360}
\crossref{https://doi.org/10.1070/SM2005v196n05ABEH000898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2154784}
\zmath{https://zbmath.org/?q=an:1087.15009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232539400005}
\elib{https://elibrary.ru/item.asp?id=9135693}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27444436580}
Linking options:
  • https://www.mathnet.ru/eng/sm1360
  • https://doi.org/10.1070/SM2005v196n05ABEH000898
  • https://www.mathnet.ru/eng/sm/v196/i5/p121
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:896
    Russian version PDF:250
    English version PDF:30
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024